cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A078144 Starts for strings of at least five consecutive nonsquarefree numbers.

Original entry on oeis.org

844, 1680, 2888, 3624, 5046, 10924, 14748, 15848, 17404, 19940, 22020, 22021, 22624, 23272, 24647, 24648, 25772, 29348, 30248, 30923, 30924, 33172, 36700, 37248, 38724, 39444, 40472, 45372, 47672, 47673, 47724, 47824, 48372, 49488
Offset: 1

Views

Author

Labos Elemer, Nov 25 2002

Keywords

Examples

			Squares dividing 5-string=844+j, j=0,..,4 are as follows:4,169,9,121,16 resp. Each term initiates an arithmetic progression with suitable large difference. Such progressions are constructible by solving suitable linear Diophantine equations. E.g., quintet = {m*k+3689649, m*k+3689650, m*k+3689651, m*k+3689652, m*k+3689653} = {9*(592900*k+409961), 25*(213444*k+147586), 49*(108900*k+75299), 4*(1334025*k+922413), 121*(44100*k+30493)}; m=2310*2310=A002110(5)^2=A061742(5)=5336100.
		

Crossrefs

Cf. A045882 (min terms), A068781 (2-chains), A070258 (3-chains), A070284 (4-chains), A078144 (5-chains), A049535 (6-chains), A077647 (8-chains), A078143 (9-chains), A188296.

Programs

Formula

Equals { A070284[k] | A070284[k+1] = A070284[k]+1 }. - M. F. Hasler, Feb 01 2016
a(n) = A188296(n) - 2. - Amiram Eldar, Feb 09 2021

A258332 Numbers n such that 4n + 1, 4n + 2 and 4n + 3 are not squarefree.

Original entry on oeis.org

211, 420, 722, 906, 2731, 3687, 3962, 4351, 4985, 5505, 5656, 5818, 6162, 6443, 7337, 7562, 7731, 8293, 9175, 9312, 9681, 9861, 10118, 11343, 11918, 11931, 11956, 12093, 12372, 13646, 13756, 13862, 14280, 14618, 14712, 14981, 15306, 15716, 15743, 15961, 16512, 17162, 17237
Offset: 1

Views

Author

Juri-Stepan Gerasimov, May 26 2015

Keywords

Examples

			211 is in this sequence because 4 * 211 + 1 = 845 = 5 * 13^2, 4 * 211 + 2 = 846 = 2 * 3^2 * 47 and 4 * 211 + 3 = 847 = 7 * 11^2.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..20000] | not IsSquarefree(4*n+1) and  not IsSquarefree(4*n+2) and not IsSquarefree(4*n+3)];
    
  • Maple
    remove(t->ormap(numtheory:-issqrfree,[4*t+1,4*t+2,4*t+3]), [$1..2*10^4]); # Robert Israel, Apr 03 2018
  • Mathematica
    Select[Range[1000], Union[{MoebiusMu[4# + 1], MoebiusMu[4# + 2], MoebiusMu[4# + 3]}] == {0} &] (* Alonso del Arte, May 26 2015 *)
  • PARI
    isok(n) = !issquarefree(4*n+1) && !issquarefree(4*n+2) && !issquarefree(4*n+3); \\ Michel Marcus, Apr 04 2018

A188347 Central element of a series of 7 successive nonsquarefree numbers.

Original entry on oeis.org

217073, 671349, 826827, 1092750, 1092751, 1427373, 2097051, 2779373, 3112822, 3306447, 3597726, 3994823, 4063777, 4442877, 4630547, 4842477, 5436378, 5479622, 5610647, 5634125, 6315022, 6474223, 6626322, 6677867, 7128474, 7216621, 7216622, 7295451, 7507926
Offset: 1

Views

Author

Keywords

Comments

Each of a(n), a(n)-1, a(n)-2, a(n)-3, a(n)+1, a(n)+2, a(n)+3 has at least one square divisor.

Examples

			217073=17*113^2, 217073-1=2^4*13567, 217073-2=3^2*89*271, 217073-3=2*5*7^2*443, 217073+1=2*3*11^2*13*23, 217073+2=5^2*19*457, 217073+3=2^2*54269.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[200000,5000000], !SquareFreeQ[#] &&!SquareFreeQ[#-1] &&!SquareFreeQ[#+1] &&!SquareFreeQ[#-2] &&!SquareFreeQ[#+2] &&!SquareFreeQ[#-3] &&!SquareFreeQ[#+3]&]

Formula

a(n) = A077640(n) + 3. - Amiram Eldar, Feb 09 2021

Extensions

More terms from Carl Najafi, Aug 22 2011
Showing 1-3 of 3 results.