cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A188314 Expansion of (1/(1-x))*c(x/((1-x)*(1-x^2))) where c(x) is the g.f. of A000108.

Original entry on oeis.org

1, 2, 5, 16, 57, 219, 883, 3687, 15803, 69128, 307363, 1385003, 6310869, 29028616, 134610771, 628612921, 2953640371, 13953726888, 66240021987, 315812059436, 1511569447859, 7260364084997, 34984937594741, 169073568381936, 819288294835939, 3979892232651125, 19377475499900015
Offset: 0

Views

Author

Paul Barry, Mar 28 2011

Keywords

Comments

Hankel transform is the (25,-29) Somos-4 sequence A188315. Image of the Catalan numbers by A060098.

Crossrefs

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x^2- Sqrt(1-4*x-6*x^2+x^4))/(2*x))); // G. C. Greubel, Aug 14 2018
  • Mathematica
    CoefficientList[Series[(1-x^2 - Sqrt[1-4*x-6*x^2+x^4])/(2*x), {x, 0, 50}], x] (* G. C. Greubel, Aug 14 2018 *)
  • PARI
    x='x+O('x^30); Vec((1-x^2- sqrt(1-4*x-6*x^2+x^4))/(2*x)) \\ G. C. Greubel, Aug 14 2018
    

Formula

G.f.: (1-x^2- sqrt(1-4*x-6*x^2+x^4))/(2*x).
G.f.: (1+x)/(1-x^2-x/(1-x-x/(1-x^2-x/(1-x-x/(1-...))))) (continued fraction).
a(n) = Sum{k=0..n, A000108(k)*Sum{i=0..floor(n/2), C(n-2i,n-2i-k)*C(k+i-1,i)}}.
Conjecture: (n+1)*a(n) +(n+2)*a(n-1) +(42-26*n)*a(n-2) +30*(3-n)*a(n-3) +(n-5)*a(n-4) +5*(n-6)*a(n-5)=0. - R. J. Mathar, Nov 15 2011
G.f. A(x) satisfies: A(x) = 1 + x * (1 + x*A(x) + A(x)^2). - Ilya Gutkovskiy, Jul 01 2020

A178628 A (1,1) Somos-4 sequence associated to the elliptic curve E: y^2 - x*y - y = x^3 + x^2 + x.

Original entry on oeis.org

1, 1, -1, -4, -3, 19, 67, -40, -1243, -4299, 25627, 334324, 627929, -29742841, -372632409, 1946165680, 128948361769, 1488182579081, -52394610324649, -2333568937567764, -5642424912729707, 3857844273728205019
Offset: 1

Views

Author

Paul Barry, May 31 2010

Keywords

Comments

a(n) is (-1)^C(n,2) times the Hankel transform of the sequence with g.f.
1/(1-x^2/(1-x^2/(1-4x^2/(1+(3/16)x^2/(1-(76/9)x^2/(1-(201/361)x^2/(1-... where
1,4,-3/16,76/9,201/361,... are the x-coordinates of the multiples of z=(0,0)
on E:y^2-xy-y=x^3+x^2+x.

Crossrefs

Programs

  • Magma
    I:=[1,1,-1,-4]; [n le 4 select I[n] else (Self(n-1)*Self(n-3) + Self(n-2)^2)/Self(n-4): n in [1..30]]; // G. C. Greubel, Sep 18 2018
    
  • Mathematica
    RecurrenceTable[{a[n] == (a[n-1]*a[n-3] +a[n-2]^2)/a[n-4], a[1] == 1, a[2] == 1, a[3] == -1, a[4] == -4}, a, {n,1,30}] (* G. C. Greubel, Sep 18 2018 *)
  • PARI
    a(n)=local(E,z);E=ellinit([ -1,1,-1,1,0]);z=ellpointtoz(E,[0,0]); round(ellsigma(E,n*z)/ellsigma(E,z)^(n^2))
    
  • PARI
    m=30; v=concat([1,1,-1,-4], vector(m-4)); for(n=5, m, v[n] = ( v[n-1]*v[n-3] +v[n-2]^2)/v[n-4]); v \\ G. C. Greubel, Sep 18 2018
    
  • PARI
    {a(n) = subst(elldivpol(ellinit([-1, 1, -1, 1, 0]), n), x ,0)}; /* Michael Somos, Jul 05 2024 */
    
  • SageMath
    @CachedFunction
    def a(n): # a = A178628
        if n<5: return (0,1,1,-1,-4)[n]
        else: return (a(n-1)*a(n-3) + a(n-2)^2)/a(n-4)
    [a(n) for n in range(1,41)] # G. C. Greubel, Jul 05 2024

Formula

a(n) = (a(n-1)*a(n-3) + a(n-2)^2)/a(n-4), n>4.
a(n) = -a(-n). a(n) = (-a(n-1)*a(n-4) +4*a(n-2)*a(n-3))/a(n-5) for all n in Z except n=5. - Michael Somos, Jul 05 2024

Extensions

Offset changed to 0. - Michael Somos, Jul 05 2024
Showing 1-2 of 2 results.