cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A188312 Expansion of (1/(1-x^2))*c(x/((1-x)*(1-x^2))) where c(x) is the g.f. of A000108.

Original entry on oeis.org

1, 1, 4, 12, 45, 174, 709, 2978, 12825, 56303, 251060, 1133943, 5176926, 23851690, 110759081, 517853840, 2435786531, 11517940357, 54722081630, 261089977806, 1250479470053, 6009884614944, 28975052979797, 140098515402139, 679189779433800, 3300702453217325, 16076773046682690
Offset: 0

Views

Author

Paul Barry, Mar 28 2011

Keywords

Comments

Hankel transform is the (25,-29) Somos-4 sequence A188313. Image of Catalan numbers by A188316.

Crossrefs

Cf. A188314.

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1-x^2 -Sqrt(1-4*x-6*x^2+x^4))/(2*x*(1+x)))); // G. C. Greubel, Aug 14 2018
  • Maple
    a := n -> add((-1)^(n-i)*hypergeom([(i+1)/2, i/2+1, i-n], [1, 2], 4), i=0..n);
    seq(simplify(a(n)), n=0..26); # Peter Luschny, May 03 2018
  • Mathematica
    CoefficientList[Series[(1-x^2 -Sqrt[1-4*x-6*x^2+x^4])/(2*x*(1+x)), {x, 0, 50}], x] (* G. C. Greubel, Aug 14 2018 *)
  • Maxima
    a(n):=sum(sum((-1)^(n-k-i)*binomial(k+i-1, k-1)*binomial(2*k+i-2, k+i-1)* binomial(n-i-1, n-k-i)/k,k,1,n-i),i,0,n); /* Vladimir Kruchinin, May 03 2018 */
    
  • PARI
    x='x+O('x^50); Vec((1-x^2 -sqrt(1-4*x-6*x^2+x^4))/(2*x*(1+x))) \\ G. C. Greubel, Aug 14 2018
    

Formula

G.f.: (1-x^2 - sqrt(1-4*x-6*x^2+x^4))/(2*x*(1+x)).
G.f.: u(x)=1/(1-x^2-x/(1-x-x*u(x))).
G.f.: 1/(1-x^2-x/(1-x-x/(1-x^2-x/(1-x-x/(1-...))))) (continued fraction).
Conjecture: (n+1)*a(n) +(3-4*n)*a(n-1) + (7-6*n)*a(n-2) -a(n-3) +(n-4)*a(n-4)=0. - R. J. Mathar, Nov 15 2011
a(n) = a(n-1) + (-1)^n + Sum_{i=0..n-1} a(i)*a(n-1-i). - Vladimir Kruchinin, May 03 2018
a(n) = Sum_{i=0..n} Sum_{k=1..n-i} (-1)^(n-k-i)*C(k+i-1,k-1)*C(2*k+i-2,k+i-1)*C(n-i-1,n-k-i)/k. - Vladimir Kruchinin, May 03 2018
a(n) = Sum_{i=0..n} (-1)^(n-i)*hypergeom([(i+1)/2, i/2+1, i-n], [1, 2], 4). - Peter Luschny, May 03 2018

A188315 A (25,-29) Somos-4 sequence.

Original entry on oeis.org

1, 1, -4, -129, -3689, -113689, 7001471, 7911171596, 6480598259201, 5987117709349201, -4830209396684261199, -230318343950087449971199, -5423908604123397486016003604, -147547506573676549005535542233729, 739578212227710098047348234126634311
Offset: 0

Views

Author

Paul Barry, Mar 28 2011

Keywords

Comments

Hankel transform of A188314.

Programs

  • Magma
    I:=[-3689, -113689, 7001471, 7911171596]; [1, 1, -4, -129] cat [n le 4 select I[n] else (25*Self(n-1)*Self(n-3) - 29*Self(n-2)^2 )/Self(n-4): n in [1..30]]; // G. C. Greubel, Aug 14 2018
  • Mathematica
    Join[{1, 1, -4, -129}, RecurrenceTable[{a[n] == (25*a[n - 1]*a[n - 3] - 29*a[n - 2]^2)/a[n - 4], a[4] == -3689, a[5] == -113689, a[6] == 7001471, a[7] == 7911171596}, a, {n, 4, 25}]]  (* G. C. Greubel, Aug 14 2018 *)
    nxt[{a_,b_,c_,d_}]:={b,c,d,(25d*b-29c^2)/a}; NestList[nxt,{1,1,-4,-129},20][[All,1]] (* Harvey P. Dale, Aug 04 2022 *)

Formula

a(n) = (25*a(n-1)*a(n-3) - 29*a(n-2)^2)/a(n-4), n>=4.

A352625 A (25,-29) Somos-4 sequence.

Original entry on oeis.org

1, 2, 7, 59, 1529, 83313, 7869898, 1687054711, 1123424582771, 1662315215971057, 4257998884448335457, 23385756731869683322514, 397068399296019032727466599, 15886280085653574502219650145963, 1107464108502549897934954766675333353, 157131202095317153373302215985417166354641
Offset: 0

Views

Author

Michael Somos, Mar 24 2022

Keywords

Comments

Hankel transform of A188314 with first term omitted.

Examples

			G.f.: 1 + 2*x + 7*x^2 + 59*x^3 + 1529*x^4 + 83313*x^5 + ...
a(2) = 7 = 2*16 - 5*5 = det([2, 5; 5, 16]).
		

Crossrefs

Programs

  • Mathematica
    b[ n_] := If[OddQ[n], a[-(n-1)/2], a[n/2-1]]; a[ n_] := If[-3<=n<=1, {23, 3, 1, 1, 2}[[n+4]], 2*b[1-n]^3*b[2-n] + b[-n]^2*(b[2-n]*b[3-n] - b[1-n]*b[4-n])];

Formula

a(n) = (25*a(n-1)*a(n-3) - 29*a(n-2)^2)/a(n-4) for all n in Z.
a(n) = (29*a(n-1)*a(n-4) - 13*a(n-2)*a(n-3))/a(n-5) for all n in Z.
a(n) = b(1-2*n) = b(2*n+2) = A188313(-1-n) for all n in Z where b(n) = A006720(n).
Showing 1-3 of 3 results.