cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A188313 A (25,-29) Somos-4 sequence.

Original entry on oeis.org

1, 3, 23, 314, 8209, 620297, 126742987, 47301104551, 32606721084786, 61958046554226593, 334806306946199122193, 3416372868727801226636179, 62595441409640805744780870839, 2993270782370572835241882188306602, 424202695773047673359251734568172738737
Offset: 0

Views

Author

Paul Barry, Mar 28 2011

Keywords

Comments

Hankel transform of A188312.

Examples

			G.f.: 1 + 3*x + 23*x^2 + 314*x^3 + 8209*x^4 + ... - _Michael Somos_, Feb 28 2022
		

Crossrefs

Cf. A006720.

Programs

  • Magma
    I:=[8209, 620297, 126742987, 47301104551]; [1, 3, 23, 314] cat [n le 4 select I[n] else (25*Self(n-1)*Self(n-3) - 29*Self(n-2)^2)/Self(n-4): n in [1..30]]; // G. C. Greubel, Aug 14 2018
  • Mathematica
    Join[{1, 3, 23, 314}, RecurrenceTable[{a[n] == (25*a[n - 1]*a[n - 3] - 29*a[n - 2]^2)/a[n - 4], a[4] == 8209, a[5] == 620297, a[6] == 126742987, a[7] == 47301104551}, a, {n, 4, 25}]]  (* G. C. Greubel, Aug 14 2018 *)
    b[ n_] := If[OddQ[n], a[(n-3)/2], a[-n/2]]; a[ n_] := If[-2<=n<=2, {2, 1, 1, 3, 23}[[n+3]], 2*b[n+2]^3*b[n+3] + b[n+1]^2*(b[n+3]*b[n+4] - b[n+2]*b[n+5])]; (* Michael Somos, Feb 28 2022 *)

Formula

a(n) = (25*a(n-1)*a(n-3) - 29*a(n-2)^2)/a(n-4), n>=4.
a(n) = b(-2*n) = b(2*n+3) = 2*b(n+2)^3*b(n+3) + b(n+1)^2*(b(n+3)*b(n+4) - b(n+2)*b(n+5)) for all n in Z where b(n) = A006720(n). - Michael Somos, Feb 28 2022

A215973 a(0) = 1, for n > 0: a(n) = Sum_{k=0..n-1} a(k) * (1 + a(n-1-k)).

Original entry on oeis.org

1, 2, 7, 28, 122, 565, 2735, 13682, 70188, 367248, 1952394, 10516141, 57265929, 314751625, 1743829163, 9728561418, 54604800126, 308137127382, 1747158309208, 9949001656704, 56872435967840, 326243091718978, 1877419829207578, 10835354636496321
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 29 2012

Keywords

Comments

Inverse binomial transform of A188312.

Crossrefs

Programs

  • Haskell
    a215973 n = a215973_list !! n
    a215973_list = 1 : f [1] where
       f xs = y : f (y:xs) where
         y = sum $ zipWith (*) xs $ map (+ 1) $ reverse xs
    
  • Mathematica
    nmax = 30; CoefficientList[Series[(2*x - 1 + Sqrt[1-8*x+12*x^2-4*x^3]) / (2*x*(x-1)), {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 31 2017 *)
  • Maxima
    a(n):=sum(sum(binomial(j+1,i)*binomial(2*j-i,j-i)*binomial(n-j+i-1,n-j),i,0,j)/(j+1),j,0,n); /* Vladimir Kruchinin, May 04 2018 */
    
  • PARI
    a(n) = sum(j=0, n, sum(i=0,j, binomial(j+1,i)*binomial(2*j-i,j-i)*binomial(n-j+i-1,n-j)/(j+1))); \\ Altug Alkan, May 04 2018
    
  • PARI
    x='x+O('x^99); Vec((2*x-1+(1-8*x+12*x^2-4*x^3)^(1/2))/(2*x*(x-1))) \\ Altug Alkan, May 04 2018

Formula

G.f.: (2*x-1+sqrt( 1-8*x+12*x^2-4*x^3))/(2*x*(x-1)). - N. J. A. Sloane, Dec 27 2012
Conjecture: (n+1)*a(n) +3*(-3*n+1)*a(n-1) +4*(5*n-7)*a(n-2) +2*(-8*n+19)*a(n-3) +2*(2*n-7)*a(n-4)=0. - R. J. Mathar, Jun 14 2016
a(n) = Sum_{j=0..n} Sum_{i=0..j} C(j+1,i)*C(2*j-i,j-i)*C(n-j+i-1,n-j)/(j+1). - Vladimir Kruchinin, May 04 2018
G.f. A(x) satisfies: A(x) = 1 + x * A(x) / (1 - x) + x * A(x)^2. - Ilya Gutkovskiy, Nov 05 2021

A188314 Expansion of (1/(1-x))*c(x/((1-x)*(1-x^2))) where c(x) is the g.f. of A000108.

Original entry on oeis.org

1, 2, 5, 16, 57, 219, 883, 3687, 15803, 69128, 307363, 1385003, 6310869, 29028616, 134610771, 628612921, 2953640371, 13953726888, 66240021987, 315812059436, 1511569447859, 7260364084997, 34984937594741, 169073568381936, 819288294835939, 3979892232651125, 19377475499900015
Offset: 0

Views

Author

Paul Barry, Mar 28 2011

Keywords

Comments

Hankel transform is the (25,-29) Somos-4 sequence A188315. Image of the Catalan numbers by A060098.

Crossrefs

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x^2- Sqrt(1-4*x-6*x^2+x^4))/(2*x))); // G. C. Greubel, Aug 14 2018
  • Mathematica
    CoefficientList[Series[(1-x^2 - Sqrt[1-4*x-6*x^2+x^4])/(2*x), {x, 0, 50}], x] (* G. C. Greubel, Aug 14 2018 *)
  • PARI
    x='x+O('x^30); Vec((1-x^2- sqrt(1-4*x-6*x^2+x^4))/(2*x)) \\ G. C. Greubel, Aug 14 2018
    

Formula

G.f.: (1-x^2- sqrt(1-4*x-6*x^2+x^4))/(2*x).
G.f.: (1+x)/(1-x^2-x/(1-x-x/(1-x^2-x/(1-x-x/(1-...))))) (continued fraction).
a(n) = Sum{k=0..n, A000108(k)*Sum{i=0..floor(n/2), C(n-2i,n-2i-k)*C(k+i-1,i)}}.
Conjecture: (n+1)*a(n) +(n+2)*a(n-1) +(42-26*n)*a(n-2) +30*(3-n)*a(n-3) +(n-5)*a(n-4) +5*(n-6)*a(n-5)=0. - R. J. Mathar, Nov 15 2011
G.f. A(x) satisfies: A(x) = 1 + x * (1 + x*A(x) + A(x)^2). - Ilya Gutkovskiy, Jul 01 2020
Showing 1-3 of 3 results.