cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188378 Partial sums of A005248.

Original entry on oeis.org

2, 5, 12, 30, 77, 200, 522, 1365, 3572, 9350, 24477, 64080, 167762, 439205, 1149852, 3010350, 7881197, 20633240, 54018522, 141422325, 370248452, 969323030, 2537720637, 6643838880, 17393796002, 45537549125, 119218851372, 312119004990, 817138163597, 2139295485800
Offset: 0

Views

Author

Gabriele Fici, Mar 29 2011

Keywords

Comments

Different from A024851.
Luo proves that these integers cannot be uniquely decomposed as the sum of distinct and nonconsecutive terms of the Lucas number sequence. - Michel Marcus, Apr 20 2020

Crossrefs

Programs

  • Magma
    [5*Fibonacci(n)*Fibonacci(n+1)+1+(-1)^n: n in [0..40]]; // Vincenzo Librandi, Jan 24 2016
  • Maple
    f:= gfun:-rectoproc({a(n+3)-4*a(n+2)+4*a(n+1)-a(n), a(0) = 2, a(1) = 5, a(2) = 12}, a(n), remember):
    map(f, [$0..60]); # Robert Israel, Feb 02 2016
  • Mathematica
    LinearRecurrence[{4,-4,1},{2,5,12},30] (* Harvey P. Dale, Oct 05 2015 *)
    Accumulate@ LucasL@ Range[0, 58, 2] (* Michael De Vlieger, Jan 24 2016 *)
  • PARI
    a(n) = 5*fibonacci(n)*fibonacci(n+1) + 1 + (-1)^n; \\ Michel Marcus, Aug 26 2013
    
  • PARI
    Vec((-2+3*x)/((x-1)*(x^2-3*x+1)) + O(x^100)) \\ Altug Alkan, Jan 24 2016
    

Formula

a(n) = A000032(2n+1)+1 = A002878(n)+1 = 2*A027941(n+1)-3*A027941(n).
G.f.: ( -2+3*x ) / ( (x-1)*(x^2-3*x+1) ). - R. J. Mathar, Mar 30 2011
a(n) = 5*A001654(n) + 1 + (-1)^n, n>=0. [Wolfdieter Lang, Jul 23 2012]
(a(n)^3 + (a(n)-2)^3) / 2 = A000032(A016945(n)) = Lucas(6*n+3) = A267797(n), for n>0. - Altug Alkan, Jan 31 2016
a(n) = 2^(-1-n)*(2^(1+n)-(3-sqrt(5))^n*(-1+sqrt(5))+(1+sqrt(5))*(3+sqrt(5))^n). - Colin Barker, Nov 02 2016