A188378 Partial sums of A005248.
2, 5, 12, 30, 77, 200, 522, 1365, 3572, 9350, 24477, 64080, 167762, 439205, 1149852, 3010350, 7881197, 20633240, 54018522, 141422325, 370248452, 969323030, 2537720637, 6643838880, 17393796002, 45537549125, 119218851372, 312119004990, 817138163597, 2139295485800
Offset: 0
Links
- Robert Israel, Table of n, a(n) for n = 0..1000
- Clark Kimberling, Lucas Representations of Positive Integers, J. Int. Seq., Vol. 23 (2020), Article 20.9.5.
- David C. Luo, Nonuniqueness Properties of Zeckendorf Related Decompositions, arXiv:2004.08316 [math.NT], 2020.
- Index entries for linear recurrences with constant coefficients, signature (4,-4,1).
Programs
-
Magma
[5*Fibonacci(n)*Fibonacci(n+1)+1+(-1)^n: n in [0..40]]; // Vincenzo Librandi, Jan 24 2016
-
Maple
f:= gfun:-rectoproc({a(n+3)-4*a(n+2)+4*a(n+1)-a(n), a(0) = 2, a(1) = 5, a(2) = 12}, a(n), remember): map(f, [$0..60]); # Robert Israel, Feb 02 2016
-
Mathematica
LinearRecurrence[{4,-4,1},{2,5,12},30] (* Harvey P. Dale, Oct 05 2015 *) Accumulate@ LucasL@ Range[0, 58, 2] (* Michael De Vlieger, Jan 24 2016 *)
-
PARI
a(n) = 5*fibonacci(n)*fibonacci(n+1) + 1 + (-1)^n; \\ Michel Marcus, Aug 26 2013
-
PARI
Vec((-2+3*x)/((x-1)*(x^2-3*x+1)) + O(x^100)) \\ Altug Alkan, Jan 24 2016
Formula
G.f.: ( -2+3*x ) / ( (x-1)*(x^2-3*x+1) ). - R. J. Mathar, Mar 30 2011
a(n) = 5*A001654(n) + 1 + (-1)^n, n>=0. [Wolfdieter Lang, Jul 23 2012]
(a(n)^3 + (a(n)-2)^3) / 2 = A000032(A016945(n)) = Lucas(6*n+3) = A267797(n), for n>0. - Altug Alkan, Jan 31 2016
a(n) = 2^(-1-n)*(2^(1+n)-(3-sqrt(5))^n*(-1+sqrt(5))+(1+sqrt(5))*(3+sqrt(5))^n). - Colin Barker, Nov 02 2016
Comments