cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A049629 a(n) = (F(6*n+5) - F(6*n+1))/4 = (F(6*n+4) + F(6*n+2))/4, where F = A000045.

Original entry on oeis.org

1, 19, 341, 6119, 109801, 1970299, 35355581, 634430159, 11384387281, 204284540899, 3665737348901, 65778987739319, 1180356041958841, 21180629767519819, 380070979773397901, 6820097006153642399, 122381675130992165281, 2196050055351705332659, 39406519321199703822581
Offset: 0

Views

Author

Keywords

Comments

x(n) := 2*a(n) and y(n) := A007805(n), n >= 0, give all the positive solutions of the Pell equation x^2 - 5*y^2 = -1.
The Gregory V. Richardson formula follows from this. - Wolfdieter Lang, Jun 20 2013
From Peter Bala, Mar 23 2018: (Start)
Define a binary operation o on the real numbers by x o y = x*sqrt(1 + y^2) + y*sqrt(1 + x^2). The operation o is commutative and associative with identity 0. Then we have
2*a(n) = 2 o 2 o ... o 2 (2*n+1 terms). For example, 2 o 2 = 4*sqrt(5) and 2 o 2 o 2 = 2 o 4*sqrt(5) = 38 = 2*a(1). Cf. A084068.
a(n) = U(2*n+1) where U(n) is the Lehmer sequence [Lehmer, 1930] defined by the recurrence U(n) = sqrt(20)*U(n-1) - U(n-2) with U(0) = 0 and U(1) = 1. The solution to the recurrence is U(n) = (1/4)*( (sqrt(5) + 2)^n - (sqrt(5) - 2)^n ). (End)

Examples

			Pell, n=1: (2*19)^2 - 5*17^2 = -1.
		

Crossrefs

Bisection of A001077 divided by 2.
Cf. similar sequences of the type (1/k)*sinh((2*n+1)*arcsinh(k)) listed in A097775.

Programs

  • Magma
    [(Fibonacci(6*n+5) - Fibonacci(6*n+1))/4: n in [0..30]]; // G. C. Greubel, Dec 15 2017
  • Maple
    with(numtheory): with(combinat):
    seq((fibonacci(6*n+5)-fibonacci(6*n+1))/4,n=0..20); # Muniru A Asiru, Mar 25 2018
  • Mathematica
    a[n_] := Simplify[(2 + Sqrt@5)^(2 n - 1) + (2 - Sqrt@5)^(2 n - 1)]/4; Array[a, 16] (* Robert G. Wilson v, Oct 28 2010 *)
  • PARI
    my(x='x+O('x^30)); Vec((1+x)/(1 - 18*x + x^2)) \\ G. C. Greubel, Dec 15 2017
    

Formula

a(n) ~ (1/4)*(sqrt(5) + 2)^(2*n+1). - Joe Keane (jgk(AT)jgk.org), May 15 2002
For all members x of the sequence, 20*x^2 + 5 is a square. Lim_{n -> oo} a(n)/a(n-1) = 9 + 2*sqrt(20) = 9 + 4*sqrt(5). The 20 can be seen to derive from the statement "20*x^2 + 5 is a square". - Gregory V. Richardson, Oct 12 2002
a(n) = (((9 + 4*sqrt(5))^(n+1) - (9 - 4*sqrt(5))^(n+1)) + ((9 + 4*sqrt(5))^n - (9 - 4*sqrt(5))^n)) / (8*sqrt(5)). - Gregory V. Richardson, Oct 12 2002
From R. J. Mathar, Nov 04 2008: (Start)
G.f.: (1+x)/(1 - 18x + x^2).
a(n) = A049660(n) + A049660(n+1). (End)
a(n) = 18*a(n-1) - a(n-2) for n>1; a(0)=1, a(1)=19. - Philippe Deléham, Nov 17 2008
a(n) = S(n,18) + S(n-1,18) with the Chebyshev S-polynomials (A049310). - Wolfdieter Lang, Jun 20 2013
From Peter Bala, Mar 23 2015: (Start)
a(n) = ( Fibonacci(6*n + 6 - 2*k) + Fibonacci(6*n + 2*k) )/( Fibonacci(6 - 2*k) + Fibonacci(2*k) ), for k an arbitrary integer.
a(n) = ( Fibonacci(6*n + 6 - 2*k - 1) - Fibonacci(6*n + 2*k + 1) )/( Fibonacci(6 - 2*k - 1) - Fibonacci(2*k + 1) ), for k an arbitrary integer, k != 1.
The aerated sequence (b(n))n>=1 = [1, 0, 19, 0, 341, 0, 6119, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -16, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047 for the connection with Chebyshev polynomials. (End)
a(n) = (A188378(n)^3 + (A188378(n)-2)^3) / 8. - Altug Alkan, Jan 24 2016
a(n) = sqrt(5 * Fibonacci(3 + 6*n)^2 - 4)/4. - Gerry Martens, Jul 25 2016
a(n) = Lucas(6*n + 3)/4. - Ehren Metcalfe, Feb 18 2017
From Peter Bala, Mar 23 2018: (Start)
a(n) = 1/4*( (sqrt(5) + 2)^(2*n+1) - (sqrt(5) - 2)^(2*n+1) ).
a(n) = 9*a(n-1) + 2*sqrt(5 + 20*a(n-1)^2).
a(n) = (1/2)*sinh((2*n + 1)*arcsinh(2)). (End)
From Peter Bala, May 09 2025: (Start)
a(n)^2 - 18*a(n)*a(n+1) + a(n+1)^2 = 20.
More generally, for real x, a(n+x)^2 - 18*a(n+x)*a(n+x+1) + a(n+x+1)^2 = 20 with a(n) := (((9 + 4*sqrt(5))^(n+1) - (9 - 4*sqrt(5))^(n+1)) + ((9 + 4*sqrt(5))^n - (9 - 4*sqrt(5))^n)) / (8*sqrt(5)) as given above.
Sum_{n >= 1} (-1)^(n+1)/(a(n) - 1/a(n)) = 1/20 (telescoping series).
Product_{n >= 1} ((a(n) + 1)/(a(n) - 1)) = sqrt(5)/2 (telescoping product). (End)

A024851 Least m such that if r and s in {-F(2*h) + tau*F(2*h-1): h = 1,2,...,n} satisfy r < s, then r < k/m < s for some integer k, where F = A000045 (Fibonacci numbers) and tau = (1+sqrt(5))/2 (golden ratio).

Original entry on oeis.org

2, 5, 12, 30, 77, 200, 522, 1365, 3572, 9350, 24477, 64080, 167762, 439205, 1149852, 3010350, 7881197, 20633240
Offset: 2

Views

Author

Keywords

Comments

Possibly a duplicate of A188378. For a guide to related sequences, see A001000. - Clark Kimberling, Aug 09 2012

Examples

			Referring to the terminology introduced at A001000, m=5 is the (1st) separator of the set S = {f(1),f(2),f(3)}, where f(h) = - F(2*h) + tau*F(2*h-1).  That is, a(3) = 5, since 1/5 < f(3) < 2/5 < f(2) < 3/5 < f(1), whereas fractions k/m for m<5 do not separate the elements of S in this manner.
		

Crossrefs

Cf. A001000.

Programs

  • Mathematica
    f[n_] := f[n] = -Fibonacci[2 n] + GoldenRatio*Fibonacci[2 n - 1]
    leastSeparator[seq_] := Module[{n = 1},
    Table[While[Or @@ (Ceiling[n #1[[1]]] <
    2 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@
    Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]];
    t = Table[N[f[h], 40], {h, 1, 18}] (* A024851 *)
    t1 = leastSeparator[t]
    (* Peter J. C. Moses, Aug 01 2012 *)

Extensions

Extended, corrected, and edited by Clark Kimberling, Aug 09 2012
a(19) from Sean A. Irvine, Jul 26 2019

A267797 Lucas numbers of the form (x^3 + y^3) / 2 where x and y are distinct positive integers.

Original entry on oeis.org

76, 1364, 24476, 439204, 7881196, 141422324, 2537720636, 45537549124, 817138163596, 14662949395604, 263115950957276, 4721424167835364, 84722519070079276, 1520283919093591604, 27280388024614569596, 489526700523968661124, 8784200221406821330636
Offset: 1

Views

Author

Altug Alkan, Jan 24 2016

Keywords

Comments

Lucas numbers that are the averages of 2 distinct positive cubes.
Inspired by relation between sequence A024851 and A188378.
Corresponding indices are 9, 15, 21, 27, 33, 39, 45, 51, 57, 63, 69, 75, 81, 87, 93, 99, 105, 111, 117, ...
6*n + 3 is the corresponding form of indices.
Corresponding y values are listed by A188378, for n > 0. Note that corresponding x values are A188378(n) - 2, for n > 0.

Examples

			Lucas number 76 is a term because 76 = (3^3 + 5^3) / 2.
Lucas number 1364 is a term because 1364 = (10^3 + 12^3) / 2.
Lucas number 24476 is a term because 24476 = (28^3 + 30^3) / 2.
Lucas number 439204 is a term because 439204 = (75^3 + 77^3) / 2.
Lucas number 7881196 is a term because 7881196 = (198^3 + 200^3) / 2.
Lucas number 141422324 is a term because 141422324 = (520^3 + 522^3) / 2.
		

Crossrefs

Programs

  • Magma
    [Fibonacci(6*n+4)+Fibonacci(6*n+2): n in [1..20]]; // Vincenzo Librandi, Jan 24 2016
  • Mathematica
    Table[Fibonacci[6 n + 4] + Fibonacci[6 n + 2], {n, 1, 20}] (* Vincenzo Librandi, Jan 24 2016 *)
    LinearRecurrence[{18,-1},{76,1364},20] (* Harvey P. Dale, Jul 23 2024 *)
  • PARI
    l(n) = fibonacci(n+1) + fibonacci(n-1);
    is(n) = for(i=ceil(sqrtn(n\2+1, 3)), sqrtn(n-.5, 3), ispower(n-i^3, 3) && return(1));
    for(n=1, 120, if(is(2*l(n)), print1(l(n), ", ")));
    
  • PARI
    a(n) = ((5*fibonacci(n)*fibonacci(n+1) + 1 + (-1)^n)^3 + (5*fibonacci(n)*fibonacci(n+1) - 1 + (-1)^n)^3) / 2;
    
  • PARI
    a(n) = (fibonacci(6*n+4) + fibonacci(6*n+2));
    
  • PARI
    Vec(4*x*(19-x)/(1-18*x+x^2) + O(x^20)) \\ Colin Barker, Jan 24 2016
    

Formula

a(n) = A000032(A016945(n)), for n > 0.
a(n) = A188378(n)^3 - 3*A188378(n)^2 + 6*A188378(n) - 4, for n > 0.
From Colin Barker, Jan 24 2016: (Start)
a(n) = (9+4*sqrt(5))^(-n)*(2-sqrt(5)+(2+sqrt(5))*(9+4*sqrt(5))^(2*n)).
a(n) = 18*a(n-1)-a(n-2) for n>2.
G.f.: 4*x*(19-x) / (1-18*x+x^2).
(End)
Showing 1-3 of 3 results.