cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A188794 a(n) is the smallest integer k >= 2 such that the number of divisors d>1 of n-k with k|(n-d) equals A188550(n).

Original entry on oeis.org

2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 3, 2, 2, 2, 5, 2, 3, 4, 2, 2, 3, 2, 3, 2, 5, 4, 2, 2, 3, 4, 2, 2, 3, 2, 3, 2, 2, 3, 7, 2, 3, 4, 2, 2, 5, 2, 3, 2, 3, 4, 2, 2, 3, 4, 5, 2, 2, 4, 3, 2, 2, 2, 3, 2, 3, 4, 2, 6, 2, 2, 3, 2, 3, 4, 5, 2, 3, 4, 2, 2, 7, 2, 3, 4, 5, 6, 2, 2, 3, 4, 2, 2, 3, 8, 5, 2, 2, 3, 4, 2, 3, 2, 3, 2
Offset: 4

Views

Author

Vladimir Shevelev, Apr 10 2011

Keywords

Comments

a(n) <= floor(sqrt(n)) follows from the definition of A188550.

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) local h, i, k, m;
           m,i:= 0,0;
           for k from 2 to floor(sqrt(n)) do
              h:= nops(select(x-> irem(x, k)=0,
                  [seq (n-d, d=divisors(n-k) minus{1})]));
              if h>m then m,i:= h,k fi
           od; i
        end:
    seq(a(n), n=4..120);  # Alois P. Heinz, Apr 10 2011
  • Mathematica
    a[n_] := Module[{h, i = 0, k, m = 0}, For[k = 2, k <= Floor[Sqrt[n]], k++, h = Length[Select[Table[n-d, {d, Rest[Divisors[n-k]]}], Mod[#, k] == 0&]]; If[h > m, {m, i} = {h, k}]]; i];
    a /@ Range[4, 120] (* Jean-François Alcover, Oct 28 2020, after Alois P. Heinz *)

A188591 Records of A188550.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 10, 12, 16, 18, 20, 24, 30, 32, 36, 40, 48, 60, 64, 72, 80, 84, 90, 96, 100, 108, 120, 128, 144, 160, 168, 180, 192, 200, 216
Offset: 1

Views

Author

Vladimir Shevelev, Apr 04 2011

Keywords

Comments

Is this the same sequence as A002183, number of divisors of n-th highly composite number?

Crossrefs

Programs

  • Mathematica
    max = 10^6; (* b = A188550 *) b[n_] := Max @ Table[Length @ Select[ Table[ n-d, {d, Divisors[n-k] // Rest}], Mod[#, k] == 0&], {k, 2, Floor[ Sqrt[n] ]}]; A188591 = Reap[For[record = 0; k = 1; n = 1, n <= max, n++, bn = b[n]; If[bn > record, record = bn; Print["a(", k++, ") = b(", n, ") = ", bn]; Sow[bn]]]][[2, 1]] (* Jean-François Alcover, Feb 07 2016 *)

Extensions

More terms from Jean-François Alcover, Feb 07 2016

A188586 a(n) is the smallest m for which A188550(m)=n, or a(n)=0 if no such m exists.

Original entry on oeis.org

4, 6, 10, 14, 34, 26, 107, 50, 74, 98, 317, 122, 5443, 386, 290, 242, 1577, 362, 2837, 482, 1154, 6146, 3467, 722, 2594, 11027, 1802, 1922, 14177, 1442, 10397, 1682, 18434, 358406, 10370, 2522, 445541, 288293, 31187, 3362, 127577, 5762, 145603, 30722, 7202
Offset: 1

Views

Author

Vladimir Shevelev, Apr 04 2011

Keywords

Comments

Question: For which primes p exist terms in the sequence of the form 2*p^2? The sequence of these primes starts with 5, 7, 11, 19, 31, 29, 41, ...

Crossrefs

Extensions

More terms from Alois P. Heinz, Apr 04 2011

A188592 Places of records of A188550.

Original entry on oeis.org

4, 6, 10, 14, 26, 50, 74, 98, 122, 242, 362, 482, 722, 1442, 1682, 2522, 3362, 5042, 10082, 15122, 20162, 30242, 40322, 50402, 55442, 90722, 100802, 110882, 166322, 221762, 332642, 443522
Offset: 1

Views

Author

Vladimir Shevelev, Apr 04 2011

Keywords

Comments

Questions:
1) Are there any terms after a(9) which are not of the form 10*k+2?
2) For which primes p do there exist terms in the sequence of the form 2*p^2? The sequence of these primes starts with 5, 7, 11, 19, 29, 41, 71, ...

Crossrefs

Extensions

More terms from Alois P. Heinz, Apr 04 2011

A188795 a(n) counts all integers k in [2,floor(sqrt(n))] such that the number of divisors d>1 of n-k with k|(n-d) equals A188550(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 3, 1, 2, 2, 3, 2, 1, 1, 1, 1, 1, 1, 4, 2, 2, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1
Offset: 4

Views

Author

Vladimir Shevelev, Apr 10 2011

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; local c, h, k, m;
           m, c:= 0, 0;
           for k from 2 to floor(sqrt(n)) do
              h:= nops(select(x-> irem(x, k)=0,
                  [seq (n-d, d=divisors(n-k) minus{1})]));
              if h=m then c:=c+1 elif h>m then m, c:= h, 1 fi
           od; c
        end:
    seq(a(n), n=4..120);  # Alois P. Heinz, Apr 10 2011
  • Mathematica
    b[n_] := Max @ Table[Length @ Select[Table[n-d, {d, Divisors[n-k] // Rest} ], Mod[#, k] == 0&], {k, 2, Floor[Sqrt[n]]}];
    a[n_] := a[n] = Count[Range[2, Floor[Sqrt[n]]], k_ /; Count[Rest @ Divisors[n-k], d_ /; Divisible[n-d, k]] == b[n]];
    Table[a[n], {n, 4, 120}] (* Jean-François Alcover, Mar 27 2017, after Alois P. Heinz *)

A188579 Numbers m for which max_{2<=k<(m-2)/2} Sum_{d>1: d|m-k, k|m-d} 1 = 3.

Original entry on oeis.org

10, 15, 17, 20, 23, 25, 29, 31, 37, 40, 41, 43, 53, 67, 71, 73, 79, 89, 97, 109, 127, 151, 157, 181, 193, 239, 241, 271, 313, 331, 337, 349, 373, 397, 421, 433, 449, 601, 613, 661, 673, 701, 757, 811, 1009, 1021, 1051, 1117, 1249, 1471, 1531, 1741
Offset: 1

Views

Author

Vladimir Shevelev, Apr 04 2011

Keywords

Comments

All terms a(n) >= 41 are primes. - Vladimir Shevelev, May 12 2013
If prime p is in the sequence, then either (p-2,p) is a twin prime pair, or p-2 = q*r, where q and r are distinct primes, or p-2 is the cube of a prime. - Vladimir Shevelev, May 15 2013

Examples

			Let n=10. Then k takes the values 2 and 3. If k=3, then d=7 and k divides n-d; if k=2, then d = 2,4,8, n-d = 8,6,2 and k divides all these values. Since max(1,3) = 3, 10 is in the sequence. - _Vladimir Shevelev_, May 12 2013
		

Crossrefs

Cf. A188550.

A188836 Numbers n for which A188794(n)^2 = n.

Original entry on oeis.org

4, 9, 25, 49, 121, 169, 289, 361, 625, 841, 961, 1369, 1681, 1849, 3721, 4489, 5041, 5329, 7921, 9409, 10201, 10609, 11881, 12769, 16129, 17161, 18769, 19321, 22201, 22801, 24649, 32761, 36481, 37249, 38809, 39601, 44521, 52441, 57121, 58081, 63001, 73441
Offset: 1

Views

Author

Vladimir Shevelev, Apr 12 2011

Keywords

Comments

The sequence contains many squares of primes.
Question 1: What is the sequence of primes whose squares are not in this sequence? It begins: 23, 47, 53, 59, 79, 83, 107, ... A188833
Question 2: What is the sequence of composite numbers whose squares are in this sequence? It begins: 25, 289, 361, 529, ...

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) local h, i, k, m;
           m, i:= 0, 0;
           for k from 2 to floor(sqrt(n)) do
              h:= nops(select(x-> irem(x, k)=0,
                      [seq (n-d, d=divisors(n-k) minus{1})]));
              if h>m then m, i:= h, k fi
           od; i
        end:
    a:= proc(n) option remember; local k;
          for k from 1+ `if` (n=1, 3, a(n-1))
          while not b(k)^2=k do od; k
        end:
    seq(a(n), n=1..15);  # Alois P. Heinz, Apr 13 2011
  • Mathematica
    b[n_] := Module[{h, i = 0, k, m = 0}, For[k = 2, k <= Floor[Sqrt[n]], k++, h = Length[Select[Table[n - d, {d, Rest[Divisors[n - k]]}], Mod[#, k] == 0 &]]; If[h > m, {m, i} = {h, k}]]; i];
    Reap[For[n = 1, n <= 80000, n++, If[b[n]^2==n, Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Nov 11 2020, after Alois P. Heinz *)

A226182 a(n) is the smallest integer k >= 2 such that the number of divisors d>1 of n + k with k|n + d equals A225867(n).

Original entry on oeis.org

2, 2, 2, 3, 2, 2, 4, 2, 2, 3, 2, 3, 2, 2, 4, 3, 2, 2, 3, 5, 2, 3, 2, 3, 2, 2, 4, 3, 2, 5, 4, 3, 2, 3, 2, 3, 2, 2, 4, 3, 2, 2, 2, 7, 2, 3, 2, 2, 2, 5, 4, 3, 2, 4, 4, 2, 2, 3, 2, 5, 6, 3, 4, 3, 2, 4, 8, 2, 2, 5, 4, 7, 2, 2, 4, 3, 2, 2, 4, 5, 2, 3, 2, 2, 6, 7, 4
Offset: 6

Views

Author

Vladimir Shevelev, May 30 2013

Keywords

Examples

			Let n = 33. We begin with k = 2. Divisors>1 of 33 + 2 = 35 are d = 5,7,35. For all d, 33 + d is divisible by k = 2. But the number of such d is 3, while A225867(33)= 6. Therefore, a(33) > 2. Consider now k = 3. Divisors>1 of 33 + 3 = 36 are 2,3,4,6,9,12,18,36, but only for d = 3,6,9,12,18,36, 33 + d is divisible by k = 3. Since we have exactly A225867(33) = 6 such divisors, then k = 3 is required and a(33) = 3.
		

Crossrefs

Programs

A188833 Primes p such that p^2 is not in A188836.

Original entry on oeis.org

23, 47, 53, 59, 79, 83, 107, 163, 167, 173, 179, 223, 227, 233, 257, 263, 269, 277, 283, 293, 317, 347, 353, 359, 367, 373, 383, 389, 401, 431, 439, 443, 457, 467, 479, 499, 503, 509, 557, 563, 569, 587, 593, 607, 643, 647, 653, 677, 683, 691, 719, 727, 733
Offset: 1

Views

Author

Vladimir Shevelev, Apr 12 2011

Keywords

Crossrefs

Programs

  • Mathematica
    A188550[n_] := Max @ Table[Length @ Select[Table[n-d, {d, Divisors[n-k] // Rest}], Mod[#, k] == 0&], {k, 2, Floor[Sqrt[n]]}]; A188794[n_] := Module[{k=2, a1=A188550[n]}, While[DivisorSum[n-k,1&, #>1&&Divisible[n-#,k]&] != a1, k++];k]; s={}; Do[p=Prime[n]; p2=p^2; If[aa[p2]^2 != p2, AppendTo[s,p]], {n, 1, 130}]; s (* Amiram Eldar, Feb 06 2019 after Jean-François Alcover at A188550 *)

Extensions

More terms from Amiram Eldar, Feb 06 2019
Showing 1-9 of 9 results.