cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A188550 Maximal number of divisors d>1 of n-k such that n-d is a multiple of k, when k runs through values 2, 3, ..., floor(sqrt(n)).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 3, 2, 2, 1, 4, 3, 2, 3, 4, 2, 3, 4, 4, 3, 2, 3, 6, 4, 4, 3, 4, 3, 4, 4, 5, 4, 4, 3, 6, 6, 3, 3, 6, 3, 4, 4, 4, 5, 4, 4, 8, 5, 6, 3, 4, 4, 4, 6, 6, 4, 4, 1, 8, 6, 4, 6, 6, 3, 5, 4, 4, 3, 4, 3, 9, 8, 6, 5, 6, 3, 4, 4, 8, 5, 6, 5, 8, 6, 4, 3, 6, 6, 6, 8, 6, 6, 4, 3, 10, 6, 8, 5, 6, 4, 6, 6, 6, 7, 4, 3, 8, 9, 4, 4, 8, 5, 6, 6, 4, 5, 4
Offset: 4

Views

Author

Vladimir Shevelev, Apr 04 2011

Keywords

Comments

Conjecture: if the definition is changed so that k runs through values 2, 3, ..., floor((n-2)/2) then, beginning with n=6, the sequence remains without changes. - Vladimir Shevelev, Apr 10 2011
From Vladimir Shevelev, Jan 21 2013: (Start)
Other conjectures:
1) Primes 5, 7, 13 are only primes p for which a(p) = 1;
2) Primes 11 and 19 are only primes p for which a(p) = 2;
3) Let n = m^2 and m be the least value of k for which the number of divisors d > 1 of n-k, such that k|(n-d), equals a(n). Then m is prime or even power of a prime. (End)

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= n-> max(seq(nops(select(x-> irem(x, k)=0,
        [seq(n-d, d=divisors(n-k) minus{1})])), k=2..floor(sqrt(n)))):
    seq(a(n), n=4..120);  # Alois P. Heinz, Apr 04 2011
  • Mathematica
    a[n_] := Max @ Table[ Length @ Select[Table[n-d, {d, Divisors[n-k] // Rest} ], Mod[#, k] == 0&], {k, 2, Floor[Sqrt[n]]}]; Table[a[n], {n, 4, 120}] (* Jean-François Alcover, Feb 06 2016, after Alois P. Heinz *)

Formula

lim sup_{n -> infinity} a(n) = infinity. Indeed, it is easy to show that a(2^(2^n+1)) >= 2^n. Moreover, for n>5, we have a(2^(2^n+1)) > 2^n. - Vladimir Shevelev, Apr 09 2011

A188794 a(n) is the smallest integer k >= 2 such that the number of divisors d>1 of n-k with k|(n-d) equals A188550(n).

Original entry on oeis.org

2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 3, 2, 2, 2, 5, 2, 3, 4, 2, 2, 3, 2, 3, 2, 5, 4, 2, 2, 3, 4, 2, 2, 3, 2, 3, 2, 2, 3, 7, 2, 3, 4, 2, 2, 5, 2, 3, 2, 3, 4, 2, 2, 3, 4, 5, 2, 2, 4, 3, 2, 2, 2, 3, 2, 3, 4, 2, 6, 2, 2, 3, 2, 3, 4, 5, 2, 3, 4, 2, 2, 7, 2, 3, 4, 5, 6, 2, 2, 3, 4, 2, 2, 3, 8, 5, 2, 2, 3, 4, 2, 3, 2, 3, 2
Offset: 4

Views

Author

Vladimir Shevelev, Apr 10 2011

Keywords

Comments

a(n) <= floor(sqrt(n)) follows from the definition of A188550.

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) local h, i, k, m;
           m,i:= 0,0;
           for k from 2 to floor(sqrt(n)) do
              h:= nops(select(x-> irem(x, k)=0,
                  [seq (n-d, d=divisors(n-k) minus{1})]));
              if h>m then m,i:= h,k fi
           od; i
        end:
    seq(a(n), n=4..120);  # Alois P. Heinz, Apr 10 2011
  • Mathematica
    a[n_] := Module[{h, i = 0, k, m = 0}, For[k = 2, k <= Floor[Sqrt[n]], k++, h = Length[Select[Table[n-d, {d, Rest[Divisors[n-k]]}], Mod[#, k] == 0&]]; If[h > m, {m, i} = {h, k}]]; i];
    a /@ Range[4, 120] (* Jean-François Alcover, Oct 28 2020, after Alois P. Heinz *)

A225868 Numbers m for which max_{2 <= k <= (m-2)/2} Sum_{d>1, d|m+k, k|m+d} 1 = 3.

Original entry on oeis.org

6, 9, 12, 13, 16, 19, 24, 31, 32, 48, 53, 83, 89, 107, 113, 131, 139, 149, 167, 179, 191, 199, 227, 233, 251, 263, 409, 431, 449, 467, 479, 503, 587, 599, 631, 659, 683, 719, 769, 827, 983, 1019, 1091, 1259, 1367, 1409, 1439, 1487, 1499, 1511, 1583, 1619, 1979
Offset: 1

Views

Author

Vladimir Shevelev, May 18 2013

Keywords

Comments

Terms >= 53 are primes p such that p+2 is either prime or semiprime or, relatively rarely, the cube of a prime. However, according to calculations by Peter J. C. Moses, up to 4.2*10^13 there are no numbers p in the sequence for which p+2 is cube of a prime. One can prove that if such a prime p exists, then it is necessary (but not sufficient) for all numbers of the quadruple {r, 2*r - 1, 4*r^2 - 6*r + 3, (2*r - 1)^3 - 2} to be primes, where r == 19 (mod 30) is defined by the equality (2r-1)^3 - 2 = p. The first 3 suitable values of r are 229, 3109, and 17449. But the corresponding p's are not in the sequence. We conjecture that all primes of the sequence are Chen primes, that is, all of them are in A109611.

Crossrefs

Programs

  • Mathematica
    f[n_] := (m = 0; Do[s = Sum[ Boole[ Divisible[n+d, k]], {d, Divisors[n+k] // Rest}]; If[s > m, m = s], {k, 2, (n-2)/2}]; m); Reap[ For[n = 1, n <= 2000, n = If[n < 53, n+1, NextPrime[n]], If[f[n] == 3, Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Jul 09 2013, after Vladimir Shevelev *)

A188591 Records of A188550.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 10, 12, 16, 18, 20, 24, 30, 32, 36, 40, 48, 60, 64, 72, 80, 84, 90, 96, 100, 108, 120, 128, 144, 160, 168, 180, 192, 200, 216
Offset: 1

Views

Author

Vladimir Shevelev, Apr 04 2011

Keywords

Comments

Is this the same sequence as A002183, number of divisors of n-th highly composite number?

Crossrefs

Programs

  • Mathematica
    max = 10^6; (* b = A188550 *) b[n_] := Max @ Table[Length @ Select[ Table[ n-d, {d, Divisors[n-k] // Rest}], Mod[#, k] == 0&], {k, 2, Floor[ Sqrt[n] ]}]; A188591 = Reap[For[record = 0; k = 1; n = 1, n <= max, n++, bn = b[n]; If[bn > record, record = bn; Print["a(", k++, ") = b(", n, ") = ", bn]; Sow[bn]]]][[2, 1]] (* Jean-François Alcover, Feb 07 2016 *)

Extensions

More terms from Jean-François Alcover, Feb 07 2016

A188836 Numbers n for which A188794(n)^2 = n.

Original entry on oeis.org

4, 9, 25, 49, 121, 169, 289, 361, 625, 841, 961, 1369, 1681, 1849, 3721, 4489, 5041, 5329, 7921, 9409, 10201, 10609, 11881, 12769, 16129, 17161, 18769, 19321, 22201, 22801, 24649, 32761, 36481, 37249, 38809, 39601, 44521, 52441, 57121, 58081, 63001, 73441
Offset: 1

Views

Author

Vladimir Shevelev, Apr 12 2011

Keywords

Comments

The sequence contains many squares of primes.
Question 1: What is the sequence of primes whose squares are not in this sequence? It begins: 23, 47, 53, 59, 79, 83, 107, ... A188833
Question 2: What is the sequence of composite numbers whose squares are in this sequence? It begins: 25, 289, 361, 529, ...

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) local h, i, k, m;
           m, i:= 0, 0;
           for k from 2 to floor(sqrt(n)) do
              h:= nops(select(x-> irem(x, k)=0,
                      [seq (n-d, d=divisors(n-k) minus{1})]));
              if h>m then m, i:= h, k fi
           od; i
        end:
    a:= proc(n) option remember; local k;
          for k from 1+ `if` (n=1, 3, a(n-1))
          while not b(k)^2=k do od; k
        end:
    seq(a(n), n=1..15);  # Alois P. Heinz, Apr 13 2011
  • Mathematica
    b[n_] := Module[{h, i = 0, k, m = 0}, For[k = 2, k <= Floor[Sqrt[n]], k++, h = Length[Select[Table[n - d, {d, Rest[Divisors[n - k]]}], Mod[#, k] == 0 &]]; If[h > m, {m, i} = {h, k}]]; i];
    Reap[For[n = 1, n <= 80000, n++, If[b[n]^2==n, Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Nov 11 2020, after Alois P. Heinz *)

A188586 a(n) is the smallest m for which A188550(m)=n, or a(n)=0 if no such m exists.

Original entry on oeis.org

4, 6, 10, 14, 34, 26, 107, 50, 74, 98, 317, 122, 5443, 386, 290, 242, 1577, 362, 2837, 482, 1154, 6146, 3467, 722, 2594, 11027, 1802, 1922, 14177, 1442, 10397, 1682, 18434, 358406, 10370, 2522, 445541, 288293, 31187, 3362, 127577, 5762, 145603, 30722, 7202
Offset: 1

Views

Author

Vladimir Shevelev, Apr 04 2011

Keywords

Comments

Question: For which primes p exist terms in the sequence of the form 2*p^2? The sequence of these primes starts with 5, 7, 11, 19, 31, 29, 41, ...

Crossrefs

Extensions

More terms from Alois P. Heinz, Apr 04 2011

A188592 Places of records of A188550.

Original entry on oeis.org

4, 6, 10, 14, 26, 50, 74, 98, 122, 242, 362, 482, 722, 1442, 1682, 2522, 3362, 5042, 10082, 15122, 20162, 30242, 40322, 50402, 55442, 90722, 100802, 110882, 166322, 221762, 332642, 443522
Offset: 1

Views

Author

Vladimir Shevelev, Apr 04 2011

Keywords

Comments

Questions:
1) Are there any terms after a(9) which are not of the form 10*k+2?
2) For which primes p do there exist terms in the sequence of the form 2*p^2? The sequence of these primes starts with 5, 7, 11, 19, 29, 41, 71, ...

Crossrefs

Extensions

More terms from Alois P. Heinz, Apr 04 2011

A188795 a(n) counts all integers k in [2,floor(sqrt(n))] such that the number of divisors d>1 of n-k with k|(n-d) equals A188550(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 3, 1, 2, 2, 3, 2, 1, 1, 1, 1, 1, 1, 4, 2, 2, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1
Offset: 4

Views

Author

Vladimir Shevelev, Apr 10 2011

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; local c, h, k, m;
           m, c:= 0, 0;
           for k from 2 to floor(sqrt(n)) do
              h:= nops(select(x-> irem(x, k)=0,
                  [seq (n-d, d=divisors(n-k) minus{1})]));
              if h=m then c:=c+1 elif h>m then m, c:= h, 1 fi
           od; c
        end:
    seq(a(n), n=4..120);  # Alois P. Heinz, Apr 10 2011
  • Mathematica
    b[n_] := Max @ Table[Length @ Select[Table[n-d, {d, Divisors[n-k] // Rest} ], Mod[#, k] == 0&], {k, 2, Floor[Sqrt[n]]}];
    a[n_] := a[n] = Count[Range[2, Floor[Sqrt[n]]], k_ /; Count[Rest @ Divisors[n-k], d_ /; Divisible[n-d, k]] == b[n]];
    Table[a[n], {n, 4, 120}] (* Jean-François Alcover, Mar 27 2017, after Alois P. Heinz *)

A188833 Primes p such that p^2 is not in A188836.

Original entry on oeis.org

23, 47, 53, 59, 79, 83, 107, 163, 167, 173, 179, 223, 227, 233, 257, 263, 269, 277, 283, 293, 317, 347, 353, 359, 367, 373, 383, 389, 401, 431, 439, 443, 457, 467, 479, 499, 503, 509, 557, 563, 569, 587, 593, 607, 643, 647, 653, 677, 683, 691, 719, 727, 733
Offset: 1

Views

Author

Vladimir Shevelev, Apr 12 2011

Keywords

Crossrefs

Programs

  • Mathematica
    A188550[n_] := Max @ Table[Length @ Select[Table[n-d, {d, Divisors[n-k] // Rest}], Mod[#, k] == 0&], {k, 2, Floor[Sqrt[n]]}]; A188794[n_] := Module[{k=2, a1=A188550[n]}, While[DivisorSum[n-k,1&, #>1&&Divisible[n-#,k]&] != a1, k++];k]; s={}; Do[p=Prime[n]; p2=p^2; If[aa[p2]^2 != p2, AppendTo[s,p]], {n, 1, 130}]; s (* Amiram Eldar, Feb 06 2019 after Jean-François Alcover at A188550 *)

Extensions

More terms from Amiram Eldar, Feb 06 2019
Showing 1-9 of 9 results.