cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A220515 Numbers n such that A183054(n) is not equal to A188569(n).

Original entry on oeis.org

24, 47, 49, 74, 96, 99, 116, 124, 145, 149, 162, 174, 194, 199, 224, 237, 243, 249, 274, 277, 292, 299, 324, 331, 341, 346, 349, 358, 374, 390, 399, 424, 439, 449, 474, 479, 488, 499, 500, 507, 524, 537, 549, 566, 574, 586, 599, 600, 624, 635
Offset: 1

Views

Author

Omar E. Pol, Feb 27 2013

Keywords

Comments

For an algorithm to compute the partition class polynomial Hpart_n(x) see the Bruinier-Ono-Sutherland paper, 3.3. Algorithm 3, p. 15-19. For more information see A222031.

Examples

			First three terms are 24, 47, 49 because first 50 terms of A183054 coincide with first 50 terms of A188569 except for the indices 24, 47, 49 as shown below:
(A183054(24) = 3) < (A188569(24) = 21).
(A183054(47) = 3) < (A188569(47) = 27).
(A183054(49) = 5) < (A188569(49) = 35).
Observation:
A183054(24) = A188569(24)/7 = 3.
A183054(47) = A188569(47)/9 = 3.
A183054(49) = A188569(49)/7 = 5.
		

Crossrefs

Extensions

a(4)-a(50) from Giovanni Resta, Mar 04 2013

A259825 a(n) = 12*H(n) where H() is the Hurwitz class number.

Original entry on oeis.org

-1, 0, 0, 4, 6, 0, 0, 12, 12, 0, 0, 12, 16, 0, 0, 24, 18, 0, 0, 12, 24, 0, 0, 36, 24, 0, 0, 16, 24, 0, 0, 36, 36, 0, 0, 24, 30, 0, 0, 48, 24, 0, 0, 12, 48, 0, 0, 60, 40, 0, 0, 24, 24, 0, 0, 48, 48, 0, 0, 36, 48, 0, 0, 60, 42, 0, 0, 12, 48, 0, 0, 84, 36, 0, 0
Offset: 0

Views

Author

Michael Somos, Jul 05 2015

Keywords

Comments

Coefficients of q-expansion of Eisenstein series G_{3/2}(tau) multiplied by 12. - N. J. A. Sloane, Mar 16 2019

Examples

			G.f. = -1 + 4*x^3 + 6*x^4 + 12*x^7 + 12*x^8 + 12*x^11 + 16*x^12 + 24*x^15 + ...
		

Crossrefs

Programs

  • Mathematica
    terms = 100; gf[m_] := With[{r = Range[-m, m]}, -2 Sum[(-1)^k*x^(k^2 + k)/(1 + (-x)^k)^2, {k, r}]/EllipticTheta[3, 0, x] - 2 Sum[(-1)^k*x^(k^2 + 2 k)/(1 + x^(2 k))^2, {k, r}]/EllipticTheta[3, 0, -x]]; gf[terms // Sqrt // Ceiling] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Apr 02 2017 *)
    a[ n_] := If[ n<1, -Boole[n==0], With[{m = Floor[(-1 + Sqrt[1 + 4*n])/2]}, -2*SeriesCoefficient[ Sum[(-1)^k*x^(k^2 + k)/(1 + (-x)^k)^2, {k, -m-1,m}] / EllipticTheta[3, 0, x] + Sum[(-1)^k*x^(k^2 + 2*k)/(1 + x^(2*k))^2, {k, -m-2,m}]/ EllipticTheta[3, 0, -x], {x, 0, n}]]]; (* Michael Somos, Feb 04 2022 *)
  • PARI
    {a(n) = 12 * qfbhclassno(n)};
    
  • PARI
    {a(n) = my(D, f); 12 * if( n<1, (n==0)/-12, [D, f] = core(-n, 1); if( D%4>1 && !(f%2), D*=4; f/=2); if( D%4<2, qfbclassno(D) / max(1, D+6), 0) * sumdiv(f, d, moebius(d) * kronecker(D, d) * sigma(f/d)))};

Formula

a(n) = 12 * A058305(n) / A058306(n). a(4*n + 1) = a(4*n + 2) = 0. a(3*n + 4) = 6 * A259827(n).
a(4*n + 3) = 4 * A130695(n). a(8*n + 3) = A005886(n) = 2 * A005869(n) = 4 * A008443(n). a(12*n + 7) = 12 * A259655(n).
a(16*n + 4) = 6 * A045834(n) = 3 * A005876(n). a(16*n + 8) = 12 * A045828(n) = 6 * A005884(n) = 3 * A005877(n).
a(24*n + 3) = 4 * A213627(n). a(24*n + 7) = 12 * A185220(n). a(24*n + 11) = 12 * A213617(n). a(24*n + 19) = 12 * A181648(n). a(24*n + 23) = 12 * A188569(n+1).
a(32*n + 4) = 6 * A213022(n). a(32*n + 8) = 12 * A213625(n). a(32*n + 12) = 16 * A008443(n) = 8 * A005869(n) = 4 * A005886(n) = 2 * A005878(n). a(32*n + 20) = 24 * A045831(n) = 6 * A004024(n). a(32*n + 24) = 24 * A213624(n).
G.f.: -2 * (Sum_{k in Z} (-1)^k * x^(k*k + k) / (1 + (-x)^k)^2) / (Sum_{k in Z} x^k^2) - 2 * (Sum_{k in Z} (-1)^k * x^(k^2 + 2*k) / (1 + x^(2*k))^2) / (Sum_{k in Z} (-x)^k^2).
a(n) >= 0 if n > 0. - Michael Somos, Feb 04 2022

A183054 h(-24*n+1) where h(d) is the class number of the quadratic field with discriminant d.

Original entry on oeis.org

3, 5, 7, 8, 10, 10, 11, 13, 14, 15, 13, 14, 19, 18, 19, 17, 16, 21, 20, 25, 21, 18, 26, 3, 25, 22, 23, 30, 24, 31, 21, 22, 32, 30, 33, 21, 29, 31, 28, 36, 27, 30, 35, 36, 34, 23, 3, 41, 5, 38, 35, 26, 40, 36, 45, 34, 25, 44, 34, 39, 32, 37, 49, 38, 51, 33
Offset: 1

Views

Author

Omar E. Pol, Jul 14 2011

Keywords

Comments

First differs from A188569 at a(24). It appears that this coincides with A188569 in a large number of terms. - Omar E. Pol, Feb 20 2013

Crossrefs

Cf. A188569.

Programs

  • Mathematica
    Table[NumberFieldClassNumber[Sqrt[-24*n + 1]], {n, 100}] (* T. D. Noe, Jul 15 2011 *)

Extensions

More terms and new definition suggested by David Scambler, Jul 15 2011
Extended by T. D. Noe, Jul 15 2011
Edited by Omar E. Pol, Feb 26 2013

A222031 Irregular triangle read by rows in which row n gives numerators of the coefficients of the partition class polynomial Hpart_n(x), n >= 1.

Original entry on oeis.org

1, -23, 3592, -419, 1, -94, 169659, -65838, 1092873176, 145023, 1, -213, 1312544, -723721, 44648582886, 9188934683, 166629520876208, 2791651635293, 1, -475, 9032603, -9455070, 3949512899743, -97215753021, 9776785708507683, -53144327916296, -134884469547631
Offset: 1

Views

Author

Omar E. Pol, Mar 04 2013

Keywords

Comments

For an algorithm to compute the partition class polynomial Hpart_n(x) see the Bruinier-Ono-Sutherland paper, 3.3. Algorithm 3, p. 15-19.
Note that the absolute value of T(n,2) is also the trace Tr(n) = A183011(n), the numerator of the finite algebraic formula for the number of partitions of n. The formula is p(n) = Tr(n)/(24*n - 1). See theorem 1.1 in the Bruinier-Ono paper.

Examples

			For n = 1 the first partition class polynomial Hpart_1(x) is x^3 - 23*x^2 + 3592/23*x - 419, so the numerators of the coefficients are 1, -23, 3592, -419.
Triangle begins:
1, -23, 3592, -419;
1, -94, 169659, -65838, 1092873176, 145023;
1, -213, 1312544, -723721, 44648582886, 9188934683, 166629520876208, 2791651635293;
1, -475, 9032603, -9455070, 3949512899743, -97215753021, 9776785708507683, -53144327916296, -134884469547631;
...
		

Crossrefs

Row n has length 1 + A188569(n). Absolute values of column 2 give A183011. Columns 3-4: A183007, A187218. For denominators see A222032.

Formula

abs(T(n,2))/(24n-1) = A183011(n)/A183010(n) = A000041(n).

A222032 Irregular triangle read by rows in which row n gives denominators of the coefficients of the partition class polynomial Hpart_n(x), n >= 1.

Original entry on oeis.org

1, 1, 23, 1, 1, 1, 47, 1, 2209, 47, 1, 1, 71, 1, 5041, 71, 357911, 5041, 1, 1, 95, 1, 9025, 19, 857375, 361, 11875, 1, 1, 119, 1, 2023, 1, 240737, 14161, 200533921, 1685159, 4857223, 1, 1, 143, 1, 1573, 143, 2924207, 20449, 418161601, 2924207, 27217619
Offset: 1

Views

Author

Omar E. Pol, Mar 04 2013

Keywords

Comments

For more information see A222031.

Examples

			For n = 1 the first partition class polynomial Hpart_1(x) is x^3 - 23*x^2 + 3592/23*x - 419, so the denominators of the coefficients are 1, 1, 23, 1.
Triangle begins:
1, 1, 23, 1;
1, 1, 47, 1, 2209, 47;
1, 1, 71, 1, 5041, 71, 357911, 5041;
1, 1, 95, 1, 9025, 19, 857375, 361, 11875;
1, 1, 119, 1, 2023, 1, 240737, 14161, 200533921, 1685159, 4857223;
1, 1, 143, 1, 1573, 143, 2924207, 20449, 418161601, 2924207, 27217619;
1, 1, 167, 1, 27889, 167, 4657463, 27889, 777796321, 4657463, 129891985607, 777796321;
		

Crossrefs

Row n has length 1 + A188569(n). For numerators see A222031.
Showing 1-5 of 5 results.