cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188581 Inverse Moebius transform of A000688, the number of factorizations of n into prime powers greater than 1.

Original entry on oeis.org

1, 2, 2, 4, 2, 4, 2, 7, 4, 4, 2, 8, 2, 4, 4, 12, 2, 8, 2, 8, 4, 4, 2, 14, 4, 4, 7, 8, 2, 8, 2, 19, 4, 4, 4, 16, 2, 4, 4, 14, 2, 8, 2, 8, 8, 4, 2, 24, 4, 8, 4, 8, 2, 14, 4, 14, 4, 4, 2, 16, 2, 4, 8, 30, 4, 8, 2, 8, 4, 8, 2, 28, 2, 4, 8, 8, 4, 8, 2, 24, 12, 4, 2, 16, 4, 4, 4, 14, 2, 16
Offset: 1

Views

Author

Marc Bogaerts, Apr 04 2011

Keywords

Examples

			For n=8; the divisors of 8 are 1,2,4,8. There are 1,1,2,3 abelian groups of these orders respectively, so a(n) = 1+1+2+3 = 7.
		

Crossrefs

Programs

  • GAP
    trf:=function ( f, x )  # the Dirichlet convolution 1 * f
        local  d;
        d := DivisorsInt( x );
        return Sum( d, function ( i )
                return f( i );
            end );
    end;
    nra:=function ( x )     # the number of Abelian Groups of order(n)
        local  pp, ll;
        pp := PrimePowersInt( x );
        ll := [ 1 .. Size( pp ) / 2 ];
        return Product( List( 2 * ll, function ( i )
                  return NrPartitions( pp[i] );
              end ) );
    end;
    a:=function ( n )
        return trf( nra, n );
    end;
    
  • Maple
    with(combinat): with(numtheory):
    a:= n-> add(mul(numbpart(i[2]), i=ifactors(d)[2]), d=divisors(n)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Apr 08 2011
  • Mathematica
    InverseMobiusTransform[a_List] := Module[{n = Length[a], b}, b = Table[0, {i, n}]; Do[b[[i]] = Plus @@ a[[Divisors[i]]], {i, n}]; b]; A688[n_] := Times @@ PartitionsP /@ Last /@ FactorInteger@n; InverseMobiusTransform[Array[A688, 100]] (* T. D. Noe, Apr 07 2011 *)
    f[0] = 1; f[e_] := f[e] = f[e - 1] + PartitionsP[e]; a[1] = 1; a[n_] := Times @@ (f[Last[#]] & /@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 09 2020 *)
  • PARI
    A000688(n)={local(f); f=factor(n); prod(i=1, matsize(f)[1], numbpart(f[i, 2]))}
    A188581(n)=sumdiv(n,d,A000688(d))
    r=vector(66,n,A188581(n)) /* show terms */ /* Joerg Arndt, Apr 08 2011 */

Formula

a(n) = Sum_{d | n} A000688(d).
Multiplicative with a(p^e) = A000070(e). - Amiram Eldar, Sep 09 2020
Dirichlet g.f.: zeta(s)^2 * Product_{k>=2} zeta(k*s). - Ilya Gutkovskiy, Nov 03 2020
Sum_{k=1..n} a(k) ~ n*((log(n) + 2*gamma - 1)*f(1) + f'(1)), where f(1) = Product_{k>=2} zeta(k) = A021002 = 2.1955691982567064617939..., f'(1) = f(1) * Sum_{k>=2} k*zeta'(k)/zeta(k) = -5.0385164470942955610707128990779476296197... and gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Aug 21 2021