A188581 Inverse Moebius transform of A000688, the number of factorizations of n into prime powers greater than 1.
1, 2, 2, 4, 2, 4, 2, 7, 4, 4, 2, 8, 2, 4, 4, 12, 2, 8, 2, 8, 4, 4, 2, 14, 4, 4, 7, 8, 2, 8, 2, 19, 4, 4, 4, 16, 2, 4, 4, 14, 2, 8, 2, 8, 8, 4, 2, 24, 4, 8, 4, 8, 2, 14, 4, 14, 4, 4, 2, 16, 2, 4, 8, 30, 4, 8, 2, 8, 4, 8, 2, 28, 2, 4, 8, 8, 4, 8, 2, 24, 12, 4, 2, 16, 4, 4, 4, 14, 2, 16
Offset: 1
Examples
For n=8; the divisors of 8 are 1,2,4,8. There are 1,1,2,3 abelian groups of these orders respectively, so a(n) = 1+1+2+3 = 7.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Programs
-
GAP
trf:=function ( f, x ) # the Dirichlet convolution 1 * f local d; d := DivisorsInt( x ); return Sum( d, function ( i ) return f( i ); end ); end; nra:=function ( x ) # the number of Abelian Groups of order(n) local pp, ll; pp := PrimePowersInt( x ); ll := [ 1 .. Size( pp ) / 2 ]; return Product( List( 2 * ll, function ( i ) return NrPartitions( pp[i] ); end ) ); end; a:=function ( n ) return trf( nra, n ); end;
-
Maple
with(combinat): with(numtheory): a:= n-> add(mul(numbpart(i[2]), i=ifactors(d)[2]), d=divisors(n)): seq(a(n), n=1..100); # Alois P. Heinz, Apr 08 2011
-
Mathematica
InverseMobiusTransform[a_List] := Module[{n = Length[a], b}, b = Table[0, {i, n}]; Do[b[[i]] = Plus @@ a[[Divisors[i]]], {i, n}]; b]; A688[n_] := Times @@ PartitionsP /@ Last /@ FactorInteger@n; InverseMobiusTransform[Array[A688, 100]] (* T. D. Noe, Apr 07 2011 *) f[0] = 1; f[e_] := f[e] = f[e - 1] + PartitionsP[e]; a[1] = 1; a[n_] := Times @@ (f[Last[#]] & /@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 09 2020 *)
-
PARI
A000688(n)={local(f); f=factor(n); prod(i=1, matsize(f)[1], numbpart(f[i, 2]))} A188581(n)=sumdiv(n,d,A000688(d)) r=vector(66,n,A188581(n)) /* show terms */ /* Joerg Arndt, Apr 08 2011 */
Formula
a(n) = Sum_{d | n} A000688(d).
Multiplicative with a(p^e) = A000070(e). - Amiram Eldar, Sep 09 2020
Dirichlet g.f.: zeta(s)^2 * Product_{k>=2} zeta(k*s). - Ilya Gutkovskiy, Nov 03 2020
Sum_{k=1..n} a(k) ~ n*((log(n) + 2*gamma - 1)*f(1) + f'(1)), where f(1) = Product_{k>=2} zeta(k) = A021002 = 2.1955691982567064617939..., f'(1) = f(1) * Sum_{k>=2} k*zeta'(k)/zeta(k) = -5.0385164470942955610707128990779476296197... and gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Aug 21 2021