cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188585 Moebius inversion of sequence A000688, the number of factorizations of n into prime powers greater than 1.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0
Offset: 1

Views

Author

Marc Bogaerts, Apr 04 2011

Keywords

Comments

Dirichlet convolution product of A000688 with the Moebius function.
It appears that a(n) is nonzero for n in A001694, the powerful numbers. - T. D. Noe, Apr 06 2011 [This is correct: a(n) > 0 if and only if n is in A001694. - Amiram Eldar, Jun 10 2025]
There is a similar sequence defined by b(n) = Product_{i} floor(e(i)/2) where n = Product_{p} p(i)^e(i) is the usual prime factorization, which differs from a(n) at n = 64, 128, 256, 512, 576, 729,.... - R. J. Mathar, Sep 18 2012 [This sequence is A365550. - Amiram Eldar, Jun 10 2025]
The number of unordered factorizations of n into 1 and prime powers p^e where p is prime and e >= 2 (A025475). - Amiram Eldar, Jun 10 2025

Crossrefs

Programs

  • GAP
    mtrf:=function ( f, x )     # the Moebius inversion formula
        local  d;
        d := DivisorsInt( x );
        return Sum( d, function ( i )
                return f( i ) * MoebiusMu( (x / i) );
            end );
    end;
    nra:=function ( x )         # the number of Abelian groups of order x
        local  pp, ll;
        pp := PrimePowersInt( x );
        ll := [ 1 .. Size( pp ) / 2 ];
        return Product( List( 2 * ll, function ( i )
                  return NrPartitions( pp[i] );
              end ) );
    end;
    a:=function ( n )
        return mtrf( nra, n );
    end;
    
  • Maple
    with(numtheory): with(combinat):
    a:= n-> add(mobius(n/d) *mul(numbpart(i[2]),
            i=ifactors(d)[2]), d=divisors(n)):
    seq(a(n), n=1..110);  # Alois P. Heinz, Apr 07 2011
  • Mathematica
    MobiusTransform[a_List] := Module[{n = Length[a], b}, b = Table[0, {i, n}];Do[b[[i]] = Plus @@ (MoebiusMu[i/Divisors[i]] a[[Divisors[i]]]), {i, n}]; b]; A688[n_] := Times @@ PartitionsP /@ Last /@ FactorInteger@n; MobiusTransform[Array[A688, 100]] (* T. D. Noe, Apr 06 2011 *)
    f[p_, e_] := PartitionsP[e] - PartitionsP[e-1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jun 10 2025 *)
  • PARI
    a(n) = vecprod(apply(x -> numbpart(x)-numbpart(x-1), factor(n)[, 2])); \\ Amiram Eldar, Jun 10 2025
    
  • Python
    from math import prod
    from sympy import partition, factorint
    def A188585(n): return prod(partition(e)-partition(e-1) for e in factorint(n).values()) # Chai Wah Wu, Jun 10 2025

Formula

a(n) = Sum_{d|n} A008683(n/d) * A000688(d).
Dirichlet g.f.: Product_{k>=2} zeta(k*s). - Ilya Gutkovskiy, Nov 03 2020
Sum_{k=1..n} a(k) ~ c * sqrt(n), where c = Product_{k>=3} zeta(k/2) = 10.0301441966843566206076085895839492473559217336... - Vaclav Kotesovec, Apr 22 2025
Multiplicative with a(p^e) = A002865(e). - Amiram Eldar, Jun 10 2025