A188585 Moebius inversion of sequence A000688, the number of factorizations of n into prime powers greater than 1.
1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0
Offset: 1
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
GAP
mtrf:=function ( f, x ) # the Moebius inversion formula local d; d := DivisorsInt( x ); return Sum( d, function ( i ) return f( i ) * MoebiusMu( (x / i) ); end ); end; nra:=function ( x ) # the number of Abelian groups of order x local pp, ll; pp := PrimePowersInt( x ); ll := [ 1 .. Size( pp ) / 2 ]; return Product( List( 2 * ll, function ( i ) return NrPartitions( pp[i] ); end ) ); end; a:=function ( n ) return mtrf( nra, n ); end;
-
Maple
with(numtheory): with(combinat): a:= n-> add(mobius(n/d) *mul(numbpart(i[2]), i=ifactors(d)[2]), d=divisors(n)): seq(a(n), n=1..110); # Alois P. Heinz, Apr 07 2011
-
Mathematica
MobiusTransform[a_List] := Module[{n = Length[a], b}, b = Table[0, {i, n}];Do[b[[i]] = Plus @@ (MoebiusMu[i/Divisors[i]] a[[Divisors[i]]]), {i, n}]; b]; A688[n_] := Times @@ PartitionsP /@ Last /@ FactorInteger@n; MobiusTransform[Array[A688, 100]] (* T. D. Noe, Apr 06 2011 *) f[p_, e_] := PartitionsP[e] - PartitionsP[e-1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jun 10 2025 *)
-
PARI
a(n) = vecprod(apply(x -> numbpart(x)-numbpart(x-1), factor(n)[, 2])); \\ Amiram Eldar, Jun 10 2025
-
Python
from math import prod from sympy import partition, factorint def A188585(n): return prod(partition(e)-partition(e-1) for e in factorint(n).values()) # Chai Wah Wu, Jun 10 2025
Formula
Dirichlet g.f.: Product_{k>=2} zeta(k*s). - Ilya Gutkovskiy, Nov 03 2020
Sum_{k=1..n} a(k) ~ c * sqrt(n), where c = Product_{k>=3} zeta(k/2) = 10.0301441966843566206076085895839492473559217336... - Vaclav Kotesovec, Apr 22 2025
Multiplicative with a(p^e) = A002865(e). - Amiram Eldar, Jun 10 2025
Comments