cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188627 Continued fraction of e+sqrt(e^2-1).

Original entry on oeis.org

5, 4, 15, 6, 1, 13, 2, 1, 1, 21, 3, 2, 16, 1, 4, 1, 1, 157, 1, 9, 1, 3, 1, 5, 1, 2, 1, 3, 1, 1, 1, 1, 11, 1, 1, 22, 1, 9, 1, 1, 1, 1, 12, 1, 7, 6, 1, 3, 2, 8, 1, 1, 1, 1, 4, 2, 3, 1, 10, 17, 1, 2, 1, 5, 8, 1, 2, 1, 6, 1, 12, 1, 39, 16, 14, 1, 46, 72, 16, 3, 1, 1, 5, 2, 1, 5, 2, 1, 10, 4, 2, 2, 3, 2, 1, 3, 2, 2, 27, 10, 4, 2, 8, 1, 2, 6, 3, 945, 1, 1, 106, 1, 1, 3, 1, 2, 6, 1, 1, 2
Offset: 0

Views

Author

Clark Kimberling, Apr 11 2011

Keywords

Examples

			e+sqrt(e^2-1) = [5, 4, 15, 6, 1, 13, 2, 1, 1, 21, 3, 2, 16, 1, ...]
		

Crossrefs

Cf. A188739 (decimal expansion).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); ContinuedFraction(Exp(1) + Sqrt(Exp(2) - 1)); // G. C. Greubel, Nov 01 2018
  • Mathematica
    r = 2 E; t = (r + (-4 + r^2)^(1/2))/2; FullSimplify[t]
    N[t, 130]
    RealDigits[N[t, 130]][[1]] (* A188739 *)
    ContinuedFraction[t, 120] (* A188627 *)
  • PARI
    default(realprecision, 100); contfrac(exp(1) + sqrt(exp(2) - 1)) \\ G. C. Greubel, Nov 01 2018
    

Extensions

Offset changed by Andrew Howroyd, Aug 08 2024