cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188652 First differences of A000463.

Original entry on oeis.org

0, 1, 2, -1, 6, -5, 12, -11, 20, -19, 30, -29, 42, -41, 56, -55, 72, -71, 90, -89, 110, -109, 132, -131, 156, -155, 182, -181, 210, -209, 240, -239, 272, -271, 306, -305, 342, -341, 380, -379, 420, -419, 462, -461, 506, -505, 552, -551, 600, -599, 650, -649, 702, -701, 756, -755, 812, -811, 870, -869, 930, -929, 992, -991, 1056, -1055, 1122, -1121, 1190, -1189, 1260, -1259, 1332, -1331, 1406
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 13 2011

Keywords

Crossrefs

Cf. A188653 (first differences).

Programs

  • Haskell
    a188652 n = a188652_list !! (n-1)
    a188652_list = zipWith (-) (tail a000463_list) a000463_list
  • Mathematica
    Differences[Flatten[Array[{#,#^2}&,40]]] (* Harvey P. Dale, Aug 04 2012 *)

Formula

a(2n) = 1 - a(2n-1), a(2n+1) = 2*n + 1 - a(2n).
a(n) = A000463(n+1) - A000463(n).
a(2n-1) = A002378(n-1), a(2n) = - A165900(n).
G.f.: -x^2*(-1-3*x+x^2+x^3) / ( (x-1)^2*(1+x)^3 ). - R. J. Mathar, Apr 14 2011
a(n) = (2*n+3-(2*n^2-2*n-5)*(-1)^n)/8. - Luce ETIENNE, Dec 18 2014
E.g.f.: ((4 + x - x^2)*cosh(x) - (1 - x - x^2)*sinh(x) - 4)/4. - Stefano Spezia, Jul 08 2023
Sum_{n>=2} 1/a(n) = 1 + (sqrt(5)-5)*Pi*tan(sqrt(5)*Pi/2)/(5*(sqrt(5)-1)). - Amiram Eldar, May 11 2025