cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188675 Partial sums of the binomial coefficients binomial(3*n,n) (A005809).

Original entry on oeis.org

1, 4, 19, 103, 598, 3601, 22165, 138445, 873916, 5560741, 35605756, 229142476, 1480820176, 9603245620, 62463474700, 407330900284, 2662179813931, 17433248900656, 114359597479261, 751343566800961, 4943188072606456
Offset: 0

Views

Author

Emanuele Munarini, Apr 08 2011

Keywords

Crossrefs

Cf. A263134: Sum_{k=0..n} binomial(3*k+1,k).
Cf. A087413: Sum_{k=0..n} binomial(3*k+2,k).

Programs

  • Mathematica
    Table[Sum[Binomial[3k, k], {k, 0, n}], {n, 0, 20}]
    Accumulate[Table[Binomial[3n,n],{n,0,20}]] (* Nearly 300 times faster than the program above. *) (* Harvey P. Dale, Sep 14 2024 *)
  • Maxima
    makelist(sum(binomial(3*k,k),k,0,n),n,0,20);
    
  • PARI
    for(n=0,25, print1(sum(k=0,n, binomial(3*k,k)), ", ")) \\ G. C. Greubel, Jan 27 2017

Formula

a(n) = Sum_{k=0..n} binomial(3*k,k).
Recurrence: 2*(n+2)*(2n+3)*a(n+2)-(31*n^2+95*n+72)*a(n+1)+3*(3*n+4)(3*n+5)*a(n)=0.
G.f.: 2*cos((1/3)*arcsin(3*sqrt(3*x)/2))/((1-x)*sqrt(4-27*x)).
a(n) ~ sqrt(3)*27^(n+1)/(46*4^n*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 20 2012