cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A188687 Partial binomial sums of binomial(3n,n)/(2n+1) = A001764(n).

Original entry on oeis.org

1, 2, 6, 25, 126, 704, 4183, 25897, 165166, 1077520, 7156352, 48222354, 328859011, 2265428728, 15740837575, 110187356134, 776336572878, 5501042194580, 39177463572112, 280277949384146, 2013277273220064, 14514764553512488, 104993261648226446
Offset: 0

Views

Author

Emanuele Munarini, Apr 08 2011

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]Binomial[3k,k]/(2k+1),{k,0,n}],{n,0,22}]
  • Maxima
    makelist(sum(binomial(n,k)*binomial(3*k,k)/(2*k+1),k,0,n),n,0,20);

Formula

a(n) = Sum_{k=0..n} binomial(n,k)*binomial(3k,k)/(2k+1).
G.f.: (2/sqrt(3x*(1-x)))*sin((1/3)*arcsin(3/2*sqrt(3*x/(1-x)))).
Recurrence: 2*n*(2*n+1)*a(n) = (39*n^2-35*n+8)*a(n-1) - 2*(n-1)*(33*n-32)*a(n-2) + 31*(n-2)*(n-1)*a(n-3). - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 31^(n+3/2)/(3^4*2^(2*n+2)*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 20 2012
G.f. A(x) satisfies: A(x) = 1 / (1 - x) + x * (1 - x) * A(x)^3. - Ilya Gutkovskiy, Jul 25 2021

A263134 a(n) = Sum_{k=0..n} binomial(3*k+1,k).

Original entry on oeis.org

1, 5, 26, 146, 861, 5229, 32361, 202905, 1284480, 8191380, 52543545, 338641305, 2191124301, 14224347181, 92603307541, 604342068085, 3952451061076, 25898039418496, 169977746765071, 1117287239602471, 7353933943361866, 48461930821297546
Offset: 0

Views

Author

Bruno Berselli, Oct 10 2015

Keywords

Comments

Primes in sequence: 5, 92603307541, 52176309488123582020412161, ...
a(n) is divisible by n for n = 1, 2, 8, 55, 82, 171, 210, 1060, 1141, ...

Crossrefs

Partial sums of A045721.
Cf. A079309: Sum_{k=0..n} binomial(2*k+1,k).
Cf. A188675: Sum_{k=0..n} binomial(3*k,k).
Cf. A087413: Sum_{k=0..n} binomial(3*k+2,k).

Programs

  • Magma
    [&+[Binomial(3*k+1,k): k in [0..n]]: n in [0..25]];
    
  • Mathematica
    Table[Sum[Binomial[3 k + 1, k], {k, 0, n}], {n, 0, 25}]
  • Maxima
    makelist(sum(binomial(3*k+1,k),k,0,n),n,0,25);
    
  • PARI
    a(n) = sum(k=0, n, binomial(3*k+1,k)) \\ Colin Barker, Oct 16 2015
  • Sage
    [sum(binomial(3*k+1,k) for k in (0..n)) for n in (0..25)]
    

Formula

Recurrence: 2*n*(2*n + 1)*a(n) = (31*n^2 + 2*n - 3)*a(n-1) - 3*(3*n - 1)*(3*n + 1)*a(n-2). - Vaclav Kotesovec, Oct 11 2015
a(n) ~ 27^(n + 3/2)/(23*sqrt(Pi*n)*4^(n + 1)). - Vaclav Kotesovec, Oct 11 2015

A087413 a(n) = Sum_{k=1..n} C(3*k,k)/3.

Original entry on oeis.org

1, 6, 34, 199, 1200, 7388, 46148, 291305, 1853580, 11868585, 76380825, 493606725, 3201081873, 20821158233, 135776966761, 887393271310, 5811082966885, 38119865826420, 250447855600320, 1647729357535485, 10854207824989830, 71581930485576630
Offset: 1

Views

Author

Benoit Cloitre, Oct 21 2003

Keywords

Crossrefs

Cf. A188675: Sum_{k=0..n} binomial(3*k,k).
Cf. A263134: Sum_{k=0..n} binomial(3*k+1,k).

Programs

Formula

G.f.: 1/((3*g-1)*(g^3-2*g^2+g-1)*(g-1)^2) where g*(1-g)^2 = x. - Mark van Hoeij, Nov 10 2011
Recurrence: 2*n*(2*n-1)*a(n) = (31*n^2-29*n+6)*a(n-1) - 3*(3*n-2)*(3*n-1)*a(n-2). - Vaclav Kotesovec, Oct 14 2012
a(n) ~ 3^(3*n+5/2)/(23*2^(2*n+1)*sqrt(Pi)*sqrt(n)). - Vaclav Kotesovec, Oct 14 2012
a(n) = Sum_{k=1..n} binomial(3*k-1,k-1). [Bruno Berselli, Oct 10 2015]

A225612 Partial sums of the binomial coefficients C(4*n,n).

Original entry on oeis.org

1, 5, 33, 253, 2073, 17577, 152173, 1336213, 11854513, 105997793, 953658321, 8622997453, 78291531921, 713305091521, 6518037055321, 59712126248041, 548239063327621, 5043390644753269, 46475480410336709, 428936432074181109, 3964252574286355429
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 06 2013

Keywords

Comments

Generally (for p>1), partial sums of the binomial coefficients C(p*n,n) are asymptotic to (1/(1-(p-1)^(p-1)/p^p)) * sqrt(p/(2*Pi*n*(p-1))) * (p^p/(p-1)^(p-1))^n.

Crossrefs

Cf. A006134 (p=2), A188675 (p=3), A225615 (p=5).

Programs

  • Maple
    A225612:=n->add(binomial(4*k,k), k=0..n): seq(A225612(n), n=0..30); # Wesley Ivan Hurt, Apr 01 2017
  • Mathematica
    Table[Sum[Binomial[4*k, k], {k, 0, n}], {n, 0, 20}]
    Accumulate[Table[Binomial[4n,n],{n,0,20}]] (* Harvey P. Dale, Feb 01 2015 *)
  • PARI
    for(n=0,50, print1(sum(k=0,n, binomial(4*k,k)), ", ")) \\ G. C. Greubel, Apr 01 2017

Formula

Recurrence: 3*n*(3*n-2)*(3*n-1)*a(n) = (283*n^3 - 411*n^2 + 182*n - 24)*a(n-1) - 8*(2*n-1)*(4*n-3)*(4*n-1)*a(n-2).
a(n) ~ 2^(8*n+17/2)/(229*sqrt(Pi*n)*3^(3*n+1/2)).

A225615 Partial sums of the binomial coefficients C(5*n,n).

Original entry on oeis.org

1, 6, 51, 506, 5351, 58481, 652256, 7376776, 84281461, 970444596, 11242722766, 130896288616, 1530255133591, 17951328648871, 211205085558031, 2491217772274111, 29449438902782636, 348806466779875961, 4138454609488474736, 49176494325141603881
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 06 2013

Keywords

Comments

Generally (for p>1), partial sums of the binomial coefficients C(p*n,n) are asymptotic to (1/(1-(p-1)^(p-1)/p^p)) * sqrt(p/(2*Pi*n*(p-1))) * (p^p/(p-1)^(p-1))^n.

Crossrefs

Cf. A006134 (p=2), A188675 (p=3), A225612 (p=4).

Programs

  • Maple
    A225615:=n->add(binomial(5*k,k), k=0..n): seq(A225615(n), n=0..30); # Wesley Ivan Hurt, Apr 01 2017
  • Mathematica
    Table[Sum[Binomial[5*k, k], {k, 0, n}], {n, 0, 20}]
  • PARI
    for(n=0,50, print1(sum(k=0,n, binomial(5*k,k)), ", ")) \\ G. C. Greubel, Apr 01 2017

Formula

Recurrence: 8*n*(2*n-1)*(4*n-3)*(4*n-1)*a(n) = (3381*n^4 - 6634*n^3 + 4551*n^2 - 1274*n + 120)*a(n-1) - 5*(5*n-4)*(5*n-3)*(5*n-2)*(5*n-1)*a(n-2).
a(n) ~ 5^(5*n+11/2)/(2869*sqrt(Pi*n)*2^(8*n+3/2)).

A356282 a(n) = Sum_{k=0..n} binomial(3*n, n-k) * p(k), where p(k) is the partition function A000041.

Original entry on oeis.org

1, 4, 23, 141, 888, 5675, 36602, 237563, 1548995, 10135554, 66504699, 437359454, 2881641263, 19016505326, 125664684700, 831400186740, 5506287269802, 36501297800013, 242167539749593, 1607851773270316, 10682384379036741, 71016046921543562, 472376627798814453
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 01 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[PartitionsP[k]*Binomial[3*n, n-k], {k, 0, n}], {n, 0, 30}]
  • PARI
    a(n) = sum(k=0, n, binomial(3*n, n-k)*numbpart(k)); \\ Michel Marcus, Aug 02 2022

Formula

a(n) ~ c * 3^(3*n + 1/2) / (sqrt(Pi*n) * 2^(2*n + 1)), where c = Sum_{j>=0} p(j)/2^j = A065446 = 3.4627466194550636115379573429...

A356283 a(n) = Sum_{k=0..n} binomial(3*n, n-k) * q(k), where q(k) is the number of partitions into distinct parts (A000009).

Original entry on oeis.org

1, 4, 22, 131, 807, 5066, 32188, 206242, 1329733, 8614685, 56024538, 365491218, 2390613557, 15671221522, 102925324569, 677110860689, 4460956827127, 29427611146335, 194348311824025, 1284856925961827, 8502252246841668, 56309476194587377, 373220349572126265
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 01 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[PartitionsQ[k]*Binomial[3*n, n-k], {k, 0, n}], {n, 0, 30}]

Formula

a(n) ~ c * 3^(3*n + 1/2) / (sqrt(Pi*n) * 2^(2*n + 1)), where c = Sum_{j>=0} q(j)/2^j = A079555 = 2.384231029031371724149899288678...

A358146 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} binomial(k*j,j).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 9, 4, 1, 1, 5, 19, 29, 5, 1, 1, 6, 33, 103, 99, 6, 1, 1, 7, 51, 253, 598, 351, 7, 1, 1, 8, 73, 506, 2073, 3601, 1275, 8, 1, 1, 9, 99, 889, 5351, 17577, 22165, 4707, 9, 1, 1, 10, 129, 1429, 11515, 58481, 152173, 138445, 17577, 10, 1
Offset: 0

Views

Author

Seiichi Manyama, Oct 31 2022

Keywords

Examples

			Square array begins:
  1, 1,   1,    1,     1,     1, ...
  1, 2,   3,    4,     5,     6, ...
  1, 3,   9,   19,    33,    51, ...
  1, 4,  29,  103,   253,   506, ...
  1, 5,  99,  598,  2073,  5351, ...
  1, 6, 351, 3601, 17577, 58481, ...
		

Crossrefs

Columns k=0-5 give: A000012, A001477(n+1), A006134, A188675, A225612, A225615.
Main diagonal gives A226391.
Cf. A358050.

Programs

  • PARI
    T(n, k) = sum(j=0, n, binomial(k*j, j));

A359665 a(n) = Sum_{k=0..n} binomial(k^3, k).

Original entry on oeis.org

1, 2, 30, 2955, 638331, 235169606, 131748994154, 104332124742623, 110963563379491743, 152605484049946645638, 263562165946020159478038, 558488792578762177358255808, 1424733420462958066911824023728, 4307309064570490624823548890385698, 15228800547242034570505949850130312826
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 10 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[k^3, k], {k, 0, n}], {n, 0, 20}]
  • PARI
    a(n) = sum(k=0, n, binomial(k^3, k)); \\ Michel Marcus, Jan 10 2023

Formula

a(n) ~ exp(n) * n^(2*n - 1/2) / sqrt(2*Pi).

A356284 a(n) = Sum_{k=0..n} binomial(3*n, k) * p(k), where p(k) is the partition function A000041.

Original entry on oeis.org

1, 4, 37, 334, 3280, 29437, 282253, 2517904, 23209785, 206685325, 1858085653, 16266231810, 144339750406, 1250038867329, 10882952174845, 93546973843450, 804847296088574, 6843680884286307, 58300294406199829, 491683063753997014, 4148296662116385627, 34746182976196757434
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 01 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[3*n, k] * PartitionsP[k], {k, 0, n}], {n, 0, 30}]
  • PARI
    a(n) = sum(k=0, n, binomial(3*n, k)*numbpart(k)); \\ Michel Marcus, Aug 02 2022

Formula

a(n) ~ 3^(3*n) * exp(Pi*sqrt(2*n/3)) / (sqrt(Pi) * n^(3/2) * 2^(2*n + 2)).
Showing 1-10 of 13 results. Next