cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188831 Primes of the form k^2 - prime(k).

Original entry on oeis.org

23, 71, 107, 263, 487, 677, 787, 1427, 1583, 2081, 3319, 5393, 8713, 10247, 11071, 12377, 18257, 20477, 24659, 26573, 29243, 29927, 33487, 34949, 37223, 37991, 41981, 51449, 60917, 64937, 66977, 71167, 83357, 85667, 99013, 100271, 109313, 110629, 118757
Offset: 1

Views

Author

Zak Seidov, Apr 11 2011

Keywords

Comments

Or, primes in A073497. Corresponding values of k in A064712.
This is to A073497 and A064712 as A184935 is to A004232 and A064711.
The two primes prime(k) and k^2-prime(k) are a Goldbach partition of k^2. - T. D. Noe, Apr 14 2011

Examples

			23 is here because 6^2 - prime(6) = 36 - 13 = 23.
		

Crossrefs

Programs

  • Magma
    [ a: k in [0..10000] | IsPrime(a) where a is k^2-NthPrime(k) ]; // Vincenzo Librandi, Apr 14 2011
  • Mathematica
    Select[Table[k^2 - Prime[k], {k, 1000}], PrimeQ] (* T. D. Noe, Apr 14 2011 *)

Formula

a(n) = A073497(A064712(n)).