cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A322707 a(0)=0, a(1)=5 and a(n) = 22*a(n-1) - a(n-2) + 10 for n > 1.

Original entry on oeis.org

0, 5, 120, 2645, 58080, 1275125, 27994680, 614607845, 13493377920, 296239706405, 6503780163000, 142786923879605, 3134808545188320, 68823001070263445, 1510971215000607480, 33172543728943101125, 728284990821747617280, 15989097254349504479045
Offset: 0

Views

Author

Seiichi Manyama, Dec 24 2018

Keywords

Comments

Solutions to X*(X+1)=30*Y^2 with Y=A077421. - R. J. Mathar, Mar 14 2023

Examples

			(sqrt(6) + sqrt(5))^2 = 11 + 2*sqrt(30) = sqrt(121) + sqrt(120). So a(2) = 120.
		

Crossrefs

Row 5 of A322699.
Cf. A188930 (sqrt(5)+sqrt(6)).

Programs

  • PARI
    concat(0, Vec(5*x*(1 + x) / ((1 - x)*(1 - 22*x + x^2)) + O(x^20))) \\ Colin Barker, Dec 24 2018

Formula

sqrt(a(n)+1) + sqrt(a(n)) = (sqrt(6) + sqrt(5))^n.
sqrt(a(n)+1) - sqrt(a(n)) = (sqrt(6) - sqrt(5))^n.
a(n) = 23*a(n-1) - 23*a(n-2) + a(n-3) for n > 2.
From Colin Barker, Dec 24 2018: (Start)
G.f.: 5*x*(1 + x) / ((1 - x)*(1 - 22*x + x^2)).
a(n) = ((11+2*sqrt(30))^(-n) * (-1+(11+2*sqrt(30))^n)^2) / 4.
(End)
2*a(n) = A077422(n)-1. - R. J. Mathar, Mar 16 2023

A188931 Continued fraction of sqrt(5)+sqrt(6).

Original entry on oeis.org

4, 1, 2, 5, 1, 1, 4, 1, 2, 24, 1, 2, 4, 2, 1, 3, 8, 3, 1, 2, 1, 1, 1, 40, 3, 1, 3, 1, 3, 3, 5, 14, 1, 5, 3, 6, 1, 9, 3, 1, 1, 10, 1, 2, 2, 1, 1, 23, 6, 4, 1, 1, 4, 1, 3, 21, 1, 3, 4, 1, 2, 1, 1, 1, 1, 4, 54, 8, 2, 3, 1, 6, 1, 6, 3, 2, 32, 1, 1, 4, 2, 1, 1, 2, 1, 1, 6, 1, 4, 2, 2, 1, 1, 1, 3, 14, 1, 11, 2, 3, 6, 32, 1, 1, 1, 8, 1, 1, 1, 3, 1, 2, 1, 10, 1, 4, 4, 1, 2, 1
Offset: 0

Views

Author

Clark Kimberling, Apr 13 2011

Keywords

Comments

For a geometric interpretation, see A188640 and A188930.

Examples

			sqrt(5)+sqrt(6)=[4,1,2,5,1,1,4,1,2,24,...].
		

Crossrefs

Cf. A188930 (decimal expansion).

Programs

  • Mathematica
    r = 20^(1/2); t = (r + (4 + r^2)^(1/2))/2; FullSimplify[t]
    N[t, 130]
    RealDigits[N[t, 130]][[1]]
    ContinuedFraction[t, 120]
    ContinuedFraction[Sqrt[5]+Sqrt[6],120] (* Harvey P. Dale, Jun 26 2021 *)

Extensions

Offset changed by Andrew Howroyd, Jul 08 2024
Showing 1-2 of 2 results.