A188896
Numbers n such that there is no square n-gonal number greater than 1.
Original entry on oeis.org
10, 20, 52, 164, 340, 580, 884, 1252, 1684, 2180, 2740, 4052, 4804, 5620, 6500, 7444, 8452, 9524, 10660, 11860, 13124, 14452, 15844, 17300, 18820, 20404, 22052, 25540, 27380, 29284, 31252, 33284, 35380, 37540, 39764, 42052, 44404, 46820, 49300, 51844
Offset: 1
-
P[n_,k_]:=1/2n(n(k-2)+4-k); data1=2#^2+2&/@Range[2,161]; data2=Head[Reduce[m^2==P[n,#] && 1Ant King, Mar 01 2012 *)
A188892
Numbers n such that there is no triangular n-gonal number greater than 1.
Original entry on oeis.org
11, 18, 38, 102, 198, 326, 486, 678, 902, 1158, 1446, 1766, 2118, 2918, 3366, 3846, 4358, 4902, 5478, 6086, 6726, 7398, 8102, 8838, 9606, 10406, 11238, 12102, 12998, 13926, 14886, 15878, 16902, 17958, 19046, 20166, 21318, 22502, 24966, 26246
Offset: 1
-
filter:= n -> nops(select(t -> min(subs(t,[x,y]))>=2, [isolve(x^2 + x = (n-2)*y^2 - (n-4)*y)])) = 0:
select(filter, [seq(t^2+2,t=3..200)]); # Robert Israel, May 13 2018
A189216
Triangle T(n,k) read by rows of the smallest n-gonal number greater than 1 that is also k-gonal, or 0 if none exists, for 3 <= k <= n.
Original entry on oeis.org
3, 36, 4, 210, 9801, 5, 6, 1225, 40755, 6, 55, 81, 4347, 121771, 7, 21, 225, 176, 11781, 297045, 8, 325, 9, 651, 325, 26884, 631125, 9, 10, 0, 12376, 1540, 540, 54405, 1212751, 10, 0, 196, 715, 0, 3186, 833, 100725, 2158695, 11, 105, 64, 12, 561, 18361, 5985, 1216, 174097, 3617601, 12
Offset: 3
The triangle begins:
3
36, 4
210, 9801, 5
6, 1225, 40755, 6
55, 81, 4347, 121771, 7
21, 225, 176, 11781, 297045, 8
325, 9, 651, 325, 26884, 631125, 9
10, 0, 12376, 1540, 540, 54405, 1212751, 10
0, 196, 715, 0, 3186, 833, 100725, 2158695, 11
-
nn = 12; Clear[poly]; Do[poly[n] = Table[i*((n - 2)*i - (n - 4))/2, {i, 2, 20000}], {n, 3, nn}]; Flatten[Table[If[k == n, n, int = Intersection[poly[n], poly[k]]; If[int == {}, 0, int[[1]]]], {n, 3, nn}, {k, 3, n}]]
Showing 1-3 of 3 results.
Comments