cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A188896 Numbers n such that there is no square n-gonal number greater than 1.

Original entry on oeis.org

10, 20, 52, 164, 340, 580, 884, 1252, 1684, 2180, 2740, 4052, 4804, 5620, 6500, 7444, 8452, 9524, 10660, 11860, 13124, 14452, 15844, 17300, 18820, 20404, 22052, 25540, 27380, 29284, 31252, 33284, 35380, 37540, 39764, 42052, 44404, 46820, 49300, 51844
Offset: 1

Views

Author

T. D. Noe, Apr 13 2011

Keywords

Comments

It is easy to find squares that are triangular, pentagonal, hexagonal, etc. So it is somewhat surprising that there are no square 10-gonal numbers other than 0 and 1. For these n, the equation 2*x^2 = (n-2)*y^2 - (n-4)*y has no integer solutions x>1 and y>1.
Chu shows how to transform the equation into a generalized Pell equation. When n has the form 2k^2+2 (A005893), then the Pell equation has only a finite number of solutions and it is simple to select the n that produce no integer solutions greater than 1.
The general case is in A188950.

Crossrefs

Cf. A001107 (10-gonal numbers), A051872 (20-gonal numbers), A188892, A100252, A188950, A005893.
Subsequence of A271624. - Muniru A Asiru, Oct 16 2016

Programs

  • Mathematica
    P[n_,k_]:=1/2n(n(k-2)+4-k); data1=2#^2+2&/@Range[2,161]; data2=Head[Reduce[m^2==P[n,#] && 1Ant King, Mar 01 2012 *)

A188892 Numbers n such that there is no triangular n-gonal number greater than 1.

Original entry on oeis.org

11, 18, 38, 102, 198, 326, 486, 678, 902, 1158, 1446, 1766, 2118, 2918, 3366, 3846, 4358, 4902, 5478, 6086, 6726, 7398, 8102, 8838, 9606, 10406, 11238, 12102, 12998, 13926, 14886, 15878, 16902, 17958, 19046, 20166, 21318, 22502, 24966, 26246
Offset: 1

Views

Author

T. D. Noe, Apr 13 2011

Keywords

Comments

It is easy to find triangular numbers that are square, pentagonal, hexagonal, etc. So it is somewhat surprising that there are no triangular 11-gonal numbers other than 0 and 1. For these n, the equation x^2 + x = (n-2)*y^2 - (n-4)*y has no integer solutions x>1 and y>1.
Chu shows how to transform the equation into a generalized Pell equation. When n has the form k^2+2 (A059100), then the Pell equation has only a finite number of solutions and it is simple to select the n that produce no integer solutions greater than 1.
The general case is in A188950.

Crossrefs

Cf. A051682 (11-gonal numbers), A051870 (18-gonal numbers), A188891, A188896.

Programs

  • Maple
    filter:= n -> nops(select(t -> min(subs(t,[x,y]))>=2, [isolve(x^2 + x = (n-2)*y^2 - (n-4)*y)])) = 0:
    select(filter, [seq(t^2+2,t=3..200)]); # Robert Israel, May 13 2018

A189216 Triangle T(n,k) read by rows of the smallest n-gonal number greater than 1 that is also k-gonal, or 0 if none exists, for 3 <= k <= n.

Original entry on oeis.org

3, 36, 4, 210, 9801, 5, 6, 1225, 40755, 6, 55, 81, 4347, 121771, 7, 21, 225, 176, 11781, 297045, 8, 325, 9, 651, 325, 26884, 631125, 9, 10, 0, 12376, 1540, 540, 54405, 1212751, 10, 0, 196, 715, 0, 3186, 833, 100725, 2158695, 11, 105, 64, 12, 561, 18361, 5985, 1216, 174097, 3617601, 12
Offset: 3

Views

Author

T. D. Noe, Apr 18 2011

Keywords

Comments

The first column (k=3, triangular numbers) is A188891. The second column (k=4, squares) is A100252. The n-th term of the n-th row is n. Observe that 0 occurs for (10,4)-gonal, (11,3)-gonal, and (11,6)-gonal numbers. This can be proved by trying to solve the equation (k-2)*x^2 - (k-4)*x = (n-2)*y^2 - (n-4)*y for integers x>1 and y>1. Other pairs that are zero: (14,5), (18,3), (18,6), (18,11), (20,4), and (20,10). See A188950 for a longer list of pairs.
Sequences A189217 and A189218 give the index of T(n,k) as a k-gonal and n-gonal number, respectively.

Examples

			The triangle begins:
3
36,      4
210,     9801,    5
6,       1225,    40755,   6
55,      81,      4347,    121771,  7
21,      225,     176,     11781,   297045,  8
325,     9,       651,     325,     26884,   631125,  9
10,      0,       12376,   1540,    540,     54405,   1212751, 10
0,       196,     715,     0,       3186,    833,     100725,  2158695,  11
		

Crossrefs

Programs

  • Mathematica
    nn = 12; Clear[poly]; Do[poly[n] = Table[i*((n - 2)*i - (n - 4))/2, {i, 2, 20000}], {n, 3, nn}]; Flatten[Table[If[k == n, n, int = Intersection[poly[n], poly[k]]; If[int == {}, 0, int[[1]]]], {n, 3, nn}, {k, 3, n}]]
Showing 1-3 of 3 results.