cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A001107 10-gonal (or decagonal) numbers: a(n) = n*(4*n-3).

Original entry on oeis.org

0, 1, 10, 27, 52, 85, 126, 175, 232, 297, 370, 451, 540, 637, 742, 855, 976, 1105, 1242, 1387, 1540, 1701, 1870, 2047, 2232, 2425, 2626, 2835, 3052, 3277, 3510, 3751, 4000, 4257, 4522, 4795, 5076, 5365, 5662, 5967, 6280, 6601, 6930, 7267, 7612, 7965, 8326
Offset: 0

Views

Author

Keywords

Comments

Write 0, 1, 2, ... in a square spiral, with 0 at the origin and 1 immediately below it; sequence gives numbers on the negative y-axis (see Example section).
Number of divisors of 48^(n-1) for n > 0. - J. Lowell, Aug 30 2008
a(n) is the Wiener index of the graph obtained by connecting two copies of the complete graph K_n by an edge (for n = 3, approximately: |>-<|). The Wiener index of a connected graph is the sum of the distances between all unordered pairs of vertices in the graph. - Emeric Deutsch, Sep 20 2010
This sequence does not contain any squares other than 0 and 1. See A188896. - T. D. Noe, Apr 13 2011
For n > 0: right edge of the triangle A033293. - Reinhard Zumkeller, Jan 18 2012
Sequence found by reading the line from 0, in the direction 0, 10, ... and the parallel line from 1, in the direction 1, 27, ..., in the square spiral whose vertices are the generalized decagonal numbers A074377. - Omar E. Pol, Jul 18 2012
Partial sums give A007585. - Omar E. Pol, Jan 15 2013
This is also a star pentagonal number: a(n) = A000326(n) + 5*A000217(n-1). - Luciano Ancora, Mar 28 2015
Also the number of undirected paths in the n-sunlet graph. - Eric W. Weisstein, Sep 07 2017
After 0, a(n) is the sum of 2*n consecutive integers starting from n-1. - Bruno Berselli, Jan 16 2018
Number of corona of an H0 hexagon with a T(n) triangle. - Craig Knecht, Dec 13 2024

Examples

			On a square lattice, place the nonnegative integers at lattice points forming a spiral as follows: place "0" at the origin; then move one step downward (i.e., in the negative y direction) and place "1" at the lattice point reached; then turn 90 degrees in either direction and place a "2" at the next lattice point; then make another 90-degree turn in the same direction and place a "3" at the lattice point; etc. The terms of the sequence will lie along the negative y-axis, as seen in the example below:
  99  64--65--66--67--68--69--70--71--72
   |   |                               |
  98  63  36--37--38--39--40--41--42  73
   |   |   |                       |   |
  97  62  35  16--17--18--19--20  43  74
   |   |   |   |               |   |   |
  96  61  34  15   4---5---6  21  44  75
   |   |   |   |   |       |   |   |   |
  95  60  33  14   3  *0*  7  22  45  76
   |   |   |   |   |   |   |   |   |   |
  94  59  32  13   2--*1*  8  23  46  77
   |   |   |   |           |   |   |   |
  93  58  31  12--11-*10*--9  24  47  78
   |   |   |                   |   |   |
  92  57  30--29--28-*27*-26--25  48  79
   |   |                           |   |
  91  56--55--54--53-*52*-51--50--49  80
   |                                   |
  90--89--88--87--86-*85*-84--83--82--81
[Edited by _Jon E. Schoenfield_, Jan 02 2017]
		

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189.
  • Bruce C. Berndt, Ramanujan's Notebooks, Part II, Springer; see p. 23.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
  • S. M. Ellerstein, The square spiral, J. Recreational Mathematics 29 (#3, 1998) 188; 30 (#4, 1999-2000), 246-250.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A093565 ((8, 1) Pascal, column m = 2). Partial sums of A017077.
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.
Cf. A003215.

Programs

  • Magma
    [4*n^2-3*n : n in [0..50] ]; // Wesley Ivan Hurt, Jun 05 2014
    
  • Maple
    A001107:=-(1+7*z)/(z-1)**3; # Simon Plouffe in his 1992 dissertation
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {0, 1, 10}, 60] (* Harvey P. Dale, May 08 2012 *)
    Table[PolygonalNumber[RegularPolygon[10], n], {n, 0, 46}] (* Arkadiusz Wesolowski, Aug 27 2016 *)
    Table[4 n^2 - 3 n, {n, 0, 49}] (* Alonso del Arte, Jan 24 2017 *)
    PolygonalNumber[10, Range[0, 20]] (* Eric W. Weisstein, Sep 07 2017 *)
    LinearRecurrence[{3, -3, 1}, {1, 10, 27}, {0, 20}] (* Eric W. Weisstein, Sep 07 2017 *)
  • PARI
    a(n)=4*n^2-3*n
    
  • Python
    a=lambda n: 4*n**2-3*n # Indranil Ghosh, Jan 01 2017
    def aList(): # Intended to compute the initial segment of the sequence, not isolated terms.
         x, y = 1, 1
         yield 0
         while True:
             yield x
             x, y = x + y + 8, y + 8
    A001107 = aList()
    print([next(A001107) for i in range(49)]) # Peter Luschny, Aug 04 2019

Formula

a(n) = A033954(-n) = A074377(2*n-1).
a(n) = n + 8*A000217(n-1). - Floor van Lamoen, Oct 14 2005
G.f.: x*(1 + 7*x)/(1 - x)^3.
Partial sums of odd numbers 1 mod 8, i.e., 1, 1 + 9, 1 + 9 + 17, ... . - Jon Perry, Dec 18 2004
1^3 + 3^3*(n-1)/(n+1) + 5^3*((n-1)*(n-2))/((n+1)*(n+2)) + 7^3*((n-1)*(n-2)*(n-3))/((n+1)*(n+2)*(n+3)) + ... = n*(4*n-3) [Ramanujan]. - Neven Juric, Apr 15 2008
Starting (1, 10, 27, 52, ...), this is the binomial transform of [1, 9, 8, 0, 0, 0, ...]. - Gary W. Adamson, Apr 30 2008
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2, a(0)=0, a(1)=1, a(2)=10. - Jaume Oliver Lafont, Dec 02 2008
a(n) = 8*n + a(n-1) - 7 for n>0, a(0)=0. - Vincenzo Librandi, Jul 10 2010
a(n) = 8 + 2*a(n-1) - a(n-2). - Ant King, Sep 04 2011
a(n) = A118729(8*n). - Philippe Deléham, Mar 26 2013
a(8*a(n) + 29*n+1) = a(8*a(n) + 29*n) + a(8*n + 1). - Vladimir Shevelev, Jan 24 2014
Sum_{n >= 1} 1/a(n) = Pi/6 + log(2) = 1.216745956158244182494339352... = A244647. - Vaclav Kotesovec, Apr 27 2016
From Ilya Gutkovskiy, Aug 28 2016: (Start)
E.g.f.: x*(1 + 4*x)*exp(x).
Sum_{n >= 1} (-1)^(n+1)/a(n) = (sqrt(2)*Pi - 2*log(2) + 2*sqrt(2)*log(1 + sqrt(2)))/6 = 0.92491492293323294695... (End)
a(n) = A000217(3*n-2) - A000217(n-2). In general, if P(k,n) be the n-th k-gonal number and T(n) be the n-th triangular number, A000217(n), then P(T(k),n) = T((k-1)*n - (k-2)) - T(k-3)*T(n-2). - Charlie Marion, Sep 01 2020
Product_{n>=2} (1 - 1/a(n)) = 4/5. - Amiram Eldar, Jan 21 2021
a(n) = A003215(n-1) + A000290(n) - 1. - Leo Tavares, Jul 23 2022

A005893 Number of points on surface of tetrahedron; coordination sequence for sodalite net (equals 2*n^2+2 for n > 0).

Original entry on oeis.org

1, 4, 10, 20, 34, 52, 74, 100, 130, 164, 202, 244, 290, 340, 394, 452, 514, 580, 650, 724, 802, 884, 970, 1060, 1154, 1252, 1354, 1460, 1570, 1684, 1802, 1924, 2050, 2180, 2314, 2452, 2594, 2740, 2890, 3044, 3202, 3364, 3530, 3700, 3874, 4052, 4234
Offset: 0

Views

Author

Keywords

Comments

Number of n-matchings of the wheel graph W_{2n} (n > 0). Example: a(2)=10 because in the wheel W_4 (rectangle ABCD and spokes OA,OB,OC,OD) we have the 2-matchings: (AB, OC), (AB, OD), (BC, OA), (BC,OD), (CD,OA), (CD,OB), (DA,OB), (DA,OC), (AB,CD) and (BC,DA). - Emeric Deutsch, Dec 25 2004
For n > 0 a(n) is the difference of two tetrahedral (or pyramidal) numbers: binomial(n+3, 3) = (n+1)(n+2)(n+3)/6. a(n) = A000292(n+1) - A000292(n-3) = (n+1)(n+2)(n+3)/6 - (n-3)(n-2)(n-1)/6. - Alexander Adamchuk, May 20 2006; updated by Peter Munn, Aug 25 2017 due to changed offset in A000292
Equals binomial transform of [1, 3, 3, 1, -1, 1, -1, 1, -1, 1, ...]. Binomial transform of A005893 = nonzero terms of A053545: (1, 5, 19, 63, 191, ...). - Gary W. Adamson, Apr 28 2008
Disregarding the terms < 10, the sums of four consecutive triangular numbers (A000217). - Rick L. Shepherd, Sep 30 2009
Use a set of n concentric circles where n >= 0 to divide the plane. a(n) is the maximal number of regions after the 2nd division. - Frank M Jackson, Sep 07 2011
Euler transform of length 4 sequence [4, 0, 0, -1]. - Michael Somos, May 14 2014
Also, growth series for affine Coxeter group (or affine Weyl group) A_3 or D_3. - N. J. A. Sloane, Jan 11 2016
For n > 2 the generalized Pell's equation x^2 - 2*(a(n) - 2)y^2 = (a(n) - 4)^2 has a finite number of positive integer solutions. - Muniru A Asiru, Apr 19 2016
Union of A188896, A277449, {1,4}. - Muniru A Asiru, Nov 25 2016
Interleaving of A008527 and A108099. - Bruce J. Nicholson, Oct 14 2019

Examples

			G.f. = 1 + 4*x + 10*x^2 + 20*x^3 + 34*x^4 + 52*x^5 + 74*x^6 + 100*x^7 + ...
		

References

  • N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10b, page 231, W_a(t).
  • H. S. M. Coxeter, "Polyhedral numbers," in R. S. Cohen et al., editors, For Dirk Struik. Reidel, Dordrecht, 1974, pp. 25-35.
  • B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #28.
  • R. W. Marks and R. B. Fuller, The Dymaxion World of Buckminster Fuller. Anchor, NY, 1973, p. 46.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. similar sequences listed in A255843.
The growth series for the affine Coxeter groups D_3 through D_12 are A005893 and A266759-A266767.
For partial sums see A005894.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Programs

Formula

G.f.: (1 - x^4)/(1-x)^4.
a(n) = A071619(n-1) + A071619(n) + A071619(n+1), n > 0. - Ralf Stephan, Apr 26 2003
a(n) = binomial(n+3, 3) - binomial(n-1, 3) for n >= 1. - Mitch Harris, Jan 08 2008
a(n) = (n+1)^2 + (n-1)^2. - Benjamin Abramowitz, Apr 14 2009
a(n) = A000217(n-2) + A000217(n-1) + A000217(n) + A000217(n+1) for n >= 2. - Rick L. Shepherd, Sep 30 2009
a(n) = 2*n^2 - 0^n + 2. - Vincenzo Librandi, Sep 27 2011
a(0)=1, a(1)=4, a(2)=10, a(3)=20, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Feb 26 2012
a(n) = A228643(n+1,2) for n > 0. - Reinhard Zumkeller, Aug 29 2013
a(n) = a(-n) for all n in Z. - Michael Somos, May 14 2014
For n >= 2: a(n) = a(n-1) + 4*n - 2. - Bob Selcoe, Mar 22 2016
E.g.f.: -1 + 2*(1 + x + x^2)*exp(x). - Ilya Gutkovskiy, Apr 19 2016
a(n) = 2*A002522(n), n>0. - R. J. Mathar, May 30 2022
From Amiram Eldar, Sep 16 2022: (Start)
Sum_{n>=0} 1/a(n) = (coth(Pi)*Pi + 3)/4.
Sum_{n>=0} (-1)^n/a(n) = (cosech(Pi)*Pi + 3)/4. (End)
Empirical: Integral_{u=-oo..+oo} sigmoid(u)*log(sigmoid(n * u)) du = -Pi^2*a(n) / (24*n), where sigmoid(x) = 1/(1+exp(-x)). Also works for non-integer n>0. - Carlo Wood, Dec 04 2023
Let P(k,n) be the n-th k-gonal number. Then P(a(k),n) = (k*n-k+1)^2 + (k-1)^2*(n-1). - Charlie Marion, May 15 2024

A051872 20-gonal (or icosagonal) numbers: a(n) = n*(9*n-8).

Original entry on oeis.org

0, 1, 20, 57, 112, 185, 276, 385, 512, 657, 820, 1001, 1200, 1417, 1652, 1905, 2176, 2465, 2772, 3097, 3440, 3801, 4180, 4577, 4992, 5425, 5876, 6345, 6832, 7337, 7860, 8401, 8960, 9537, 10132, 10745, 11376, 12025, 12692, 13377, 14080
Offset: 0

Views

Author

N. J. A. Sloane, Dec 15 1999

Keywords

Comments

This sequence does not contain any squares other than 0 and 1. See A188896. - T. D. Noe, Apr 13 2011
Sequence found by reading the line from 0, in the direction 0, 20,... and the parallel line from 1, in the direction 1, 57,..., in the square spiral whose vertices are the generalized 20-gonal numbers. - Omar E. Pol, Jul 18 2012
This is also a star decagonal number: a(n) = A001107(n) + 10*A000217(n-1). - Luciano Ancora, Mar 30 2015

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 189.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.

Programs

Formula

a(n) = 18*n + a(n-1) - 17, with n > 0, a(0) = 0. - Vincenzo Librandi, Aug 06 2010
G.f.: x*(1+17*x)/(1-x)^3. - Bruno Berselli, Feb 04 2011
a(18*a(n) + 154*n + 1) = a(18*a(n) + 154*n) + a(18*n + 1). - Vladimir Shevelev, Jan 24 2014
Product_{n>=2} (1 - 1/a(n)) = 9/10. - Amiram Eldar, Jan 22 2021
For n>0, a(n) = A002378(3*n-2) + n - 2. - Charlie Marion, Jul 18 2022
E.g.f.: exp(x)*(x + 9*x^2). - Nikolaos Pantelidis, Feb 05 2023

A100252 Least square n-gonal number greater than 1, or 0 if none exists.

Original entry on oeis.org

36, 4, 9801, 1225, 81, 225, 9, 0, 196, 64, 36, 441, 3025, 16, 17689, 100, 484, 0, 2601, 729, 68121, 225, 25, 7225, 25921, 81, 1225, 203401, 441, 1089, 4761, 196, 15376, 36, 1936, 511225, 784, 576, 55071241, 47089, 1156, 256, 529046001, 2916, 1134225
Offset: 3

Views

Author

Charlie Marion, Nov 21 2004

Keywords

Comments

Also, let j be the smallest integer for which 1+(1+1*n)+(1+2*n)+... +(1+j*n)=k^2=s. Then a(n)=s; if no such j exists, then a(n)=0. Basis for sequence is shortest arithmetic series with initial term 1 and difference n that sums to a perfect square.
See A100251 and A188898 for the corresponding indices of these terms. Note that a(n) is zero for n = 10, 20, 52 (numbers in A188896). Although the Mathematica program searches only the first 25000 square numbers for n-gonal numbers, the Reduce function can show that there are no square n-gonal numbers (other than 0 and 1) for these n. - T. D. Noe, Apr 19 2011

Examples

			a(3)=9801 since 1 + 4 + 7 +...+ (1+80*3)= 99^2 = 9801 and no other arithmetic series with initial term 1, difference 3 and fewer terms sums to a perfect square.
		

Crossrefs

Cf. A000290 (squares), A188891 (similar sequence for triangular numbers).

Programs

  • Mathematica
    NgonIndex[n_, v_] := (-4 + n + Sqrt[16 - 8*n + n^2 - 16*v + 8*n*v])/(n - 2)/2; Table[k = 2; While[sqr = k^2; i = NgonIndex[n, sqr]; k < 25000 && ! IntegerQ[i], k++]; If[k == 25000, k = sqr = i = 0]; sqr, {n, 3, 64}] (* T. D. Noe, Apr 19 2011 *)

Formula

1+(1+1*n)+(1+2*n)+...+(1+A100254(n)*n) = 1+(1+1*n)+(1+2*n)+...+A100253(n) = A100251(n)^2 = a(n).

A188892 Numbers n such that there is no triangular n-gonal number greater than 1.

Original entry on oeis.org

11, 18, 38, 102, 198, 326, 486, 678, 902, 1158, 1446, 1766, 2118, 2918, 3366, 3846, 4358, 4902, 5478, 6086, 6726, 7398, 8102, 8838, 9606, 10406, 11238, 12102, 12998, 13926, 14886, 15878, 16902, 17958, 19046, 20166, 21318, 22502, 24966, 26246
Offset: 1

Views

Author

T. D. Noe, Apr 13 2011

Keywords

Comments

It is easy to find triangular numbers that are square, pentagonal, hexagonal, etc. So it is somewhat surprising that there are no triangular 11-gonal numbers other than 0 and 1. For these n, the equation x^2 + x = (n-2)*y^2 - (n-4)*y has no integer solutions x>1 and y>1.
Chu shows how to transform the equation into a generalized Pell equation. When n has the form k^2+2 (A059100), then the Pell equation has only a finite number of solutions and it is simple to select the n that produce no integer solutions greater than 1.
The general case is in A188950.

Crossrefs

Cf. A051682 (11-gonal numbers), A051870 (18-gonal numbers), A188891, A188896.

Programs

  • Maple
    filter:= n -> nops(select(t -> min(subs(t,[x,y]))>=2, [isolve(x^2 + x = (n-2)*y^2 - (n-4)*y)])) = 0:
    select(filter, [seq(t^2+2,t=3..200)]); # Robert Israel, May 13 2018

A342709 12-gonal (dodecagonal) square numbers.

Original entry on oeis.org

1, 64, 3025, 142129, 6677056, 313679521, 14736260449, 692290561600, 32522920134769, 1527884955772561, 71778070001175616, 3372041405099481409, 158414167969674450625, 7442093853169599697984, 349619996931001511354641, 16424697761903901433970161
Offset: 1

Views

Author

Bernard Schott, Mar 19 2021

Keywords

Comments

The 12-gonal square numbers k correspond to the nonnegative integer solutions of the Diophantine equation k = d*(5*d-4) = c^2, equivalent to (5*d-2)^2 - 5*c^2 = 4. Substituting x = 5*d-2 and y = c gives the Pell-Fermat's equation x^2 - 5*y^2 = 4.
The solutions x are in A342710, while corresponding solutions y that are also the indices c of the squares which are 12-gonal are in A033890.
The indices d of the corresponding 12-gonal which are squares are in A081068.

Examples

			142129 = 169*(5*169-4) = 377^2, so 142129 is the 169th 12-gonal number and the 377th square, hence 142129 is a term.
		

Crossrefs

Intersection of A000290 (squares) and A051624 (12-gonal numbers).
Similar for n-gonal squares: A001110 (triangular), A036353 (pentagonal), A046177 (hexagonal), A036354 (heptagonal), A036428 (octagonal), A036411 (9-gonal), A188896 (there are no 10-gonal squares > 1), A333641 (11-gonal), this sequence (12-gonal).

Programs

  • Maple
    with(combinat):
    seq(fibonacci(4*n-2)^2, n=1..16);
  • Mathematica
    Table[Fibonacci[4*n - 2]^2, {n, 1, 16}] (* Amiram Eldar, Mar 19 2021 *)
  • PARI
    a(n) = fibonacci(4*n-2)^2; \\ Michel Marcus, Mar 21 2021

Formula

G.f.: x*(1 + 16*x + x^2)/((1 - x)*(1 - 47*x + x^2)). - Stefano Spezia, Mar 20 2021
a(n) = 48*a(n-1) - 48*a(n-2) + a(n-3). - Kevin Ryde, Mar 20 2021
a(n) = 9*A161582(n) + 1. - Hugo Pfoertner, Mar 19 2021
a(n) = A033890(n-1)^2.

A188950 Pairs of numbers (n,k) such that there is no n-gonal k-gonal number greater than 1, sorted by the sum n+k and then n.

Original entry on oeis.org

3, 11, 4, 10, 6, 11, 5, 14, 3, 18, 4, 20, 6, 18, 7, 22, 11, 18, 10, 20, 6, 27, 5, 29, 8, 26, 11, 27, 9, 30, 3, 38, 14, 29, 6, 38, 10, 34, 18, 27, 11, 38, 7, 47, 12, 42, 20, 34, 5, 50, 4, 52, 18, 38, 6, 51, 13, 46, 11, 51, 8, 56, 14, 50, 27, 38, 15, 54, 22, 47
Offset: 1

Views

Author

T. D. Noe, Apr 20 2011

Keywords

Comments

These are n and k such that the generalized Pell equation (k-2)*x^2 - (k-4)*x = (n-2)*y^2 - (n-4)*y has no solution in integers x>1 and y>1. The paper by Chu shows how to solve these equations. A necessary condition for a pair to be in this sequence is (n-2)(k-2) is a square. These (n,k) pairs indicate where the zeros are in triangle A189216, which gives the least n-gonal k-gonal number greater than 1. For triangular (n=3) and square (n=4) numbers, see A188892 and A188896 for lists of k.

Examples

			The pairs begin (3,11), (4,10), (6,11), (5,14), (3,18), (4,20), (6,18).
		

Crossrefs

Programs

  • Mathematica
    maxSum=100; Reap[Do[k=s-n; If[k>n && IntegerQ[Sqrt[(n-2)*(k-2)]] && FindInstance[(k-2)*x^2 - (k-4)*x == (n-2)*y^2 - (n-4)*y && x>1 && y>1, {x,y}, Integers] == {}, Sow[{n,k}]], {s,7,maxSum}, {n,3,s-3}]][[2,1]]

A188898 The index of the least n-gonal number greater than 1 that is also square, or 0 if none exists.

Original entry on oeis.org

8, 2, 81, 25, 6, 9, 2, 0, 7, 4, 3, 9, 22, 2, 49, 4, 8, 0, 17, 9, 81, 5, 2, 25, 46, 3, 10, 121, 6, 9, 18, 4, 31, 2, 11, 169, 7, 6, 1681, 49, 8, 4, 4961, 12, 225, 8, 2, 16, 32, 0, 49, 25, 17, 13, 289, 9, 49, 7, 27, 81, 118, 2, 136161, 196, 14, 4, 10, 841, 1521
Offset: 3

Views

Author

T. D. Noe, Apr 13 2011

Keywords

Comments

Sequence A188896 gives the n that have no solution.

Crossrefs

Cf. A100252 (least square n-gonal number greater than 1).

Programs

  • Mathematica
    kMax = 25000; NgonIndex[n_, v_] := (-4 + n + Sqrt[16 - 8*n + n^2 - 16*v + 8*n*v])/(n - 2)/2; Table[k = 2; While[sqr = k^2; i = NgonIndex[n, sqr]; k < kMax && ! IntegerQ[i], k++]; If[k == kMax, k = sqr = i = 0]; i, {n, 3, 64}]

Formula

If n is a square, then a(n)=2.

A277449 Numbers n such that there is exactly one nontrivial square n-gonal number.

Original entry on oeis.org

34, 74, 100, 130, 202, 244, 290, 394, 452, 514, 650, 724, 802, 970, 1060, 1154, 1354, 1460, 1570, 1802, 1924, 2050, 2314, 2452, 2594, 2890, 3044, 3202, 3364, 3530, 3700, 3874, 4234, 4420, 4610, 5002, 5204, 5410, 5834, 6052, 6274, 6730, 6964, 7202, 7690, 7940, 8194, 8714, 8980, 9250, 9802, 10084, 10370, 10954, 11252, 11554, 12170, 12484, 12802, 13450, 13780
Offset: 1

Views

Author

Muniru A Asiru, Oct 16 2016

Keywords

Comments

There are infinitely many squares that are triangular, pentagonal, hexagonal, etc. Also there is no square 10-gonal number, 20-gonal number, 52-gonal number, 64-gonal number, etc. greater than 1 (see A188896). Other than the trivial square n-gonal numbers 0 and 1, there is exactly one square 34-gonal number, one square 74-gonal number, one square 100-gonal number, one square 130-gonal number, etc.

Examples

			For n = 34, the square 34-gonal numbers are 0, 1, 196.
For n = 74, the square 74-gonal numbers are 0, 1, 2601.
For n = 100, the square 100-gonal numbers are 0, 1, 100.
		

Crossrefs

Programs

  • GAP
    G:=[];; for g in [5..100000]  do for r in [1..5000] do if 2*g-4=r^2 then Add(G,g); fi; od; od; G; Length(G);
    F:=List(G,g->[g,DivisorsInt((g-4)^2)]);;
    N:=List([1..Length(F)], i->List([1..Length(F[i][2])],j->[F[i][1],((F[i][1]-4)*(F[i][1]-4+2*F[i][2][j])+F[i][2][j]^2)/((4*F[i][1]-8)*F[i][2][j])] ) );;
    N1:=Filtered(List(List([1..Length(N)],k->Filtered(N[k], l->IsPosInt(l[2]))),Set),o->Length(o)>=2);
    N2:=Set(Flat(List([1..Length(N1)],i->List([1..Length(N1[i])],j->N1[i][j][1]))));

A189804 Triangle read by rows: T(n,k) is the number of compositions of set {1, 2, ..., k} into exactly n blocks, each of size 1, 2 or 3 (n >= 0, 0 <= k <= 3*n).

Original entry on oeis.org

1, 0, 1, 1, 1, 0, 0, 2, 6, 14, 20, 20, 0, 0, 0, 6, 36, 150, 450, 1050, 1680, 1680, 0, 0, 0, 0, 24, 240, 1560, 7560, 29400, 90720, 218400, 369600, 369600, 0, 0, 0, 0, 0, 120, 1800, 16800, 117600, 667800, 3137400, 12243000, 38808000, 96096000, 168168000, 168168000
Offset: 0

Views

Author

Adi Dani, Apr 27 2011

Keywords

Comments

Row n has 3*n+1 entries.
Column sums give A188896, row sums give A144422. - Adi Dani, May 14 2011

Examples

			Triangle begins:
[1]
[0, 1, 1, 1]
[0, 0, 2, 6, 14, 20, 20]
[0, 0, 0, 6, 36, 150, 450, 1050, 1680, 1680]
[0, 0, 0, 0, 24, 240, 1560, 7560, 29400, 90720, 218400, 369600, 369600]
[0, 0, 0, 0, 0, 120, 1800, 16800, 117600, 667880, 3137400, 12243000, 3880800, 96096000, 168168000, 168168000]
		

Programs

  • Maple
    T := proc(n, k)
    option remember;
    if n = k then 1;
    elif k < n then 0;
    elif n < 1 then 0;
    else =k *T(n - 1, k - 1) +  (1/2)*k*(k - 1)*T(n - 1, k - 2)+ (1/6)*k* (k - 1)*(k - 2)*T(n - 1, k - 3);
    end if;
    end proc; for n from 0 to 12 do lprint([seq(T(n, k), k=0..3*n)]); od:
  • Mathematica
    Table[Sum[ n!/(2^(n + j - 2m)3^(m - j))Binomial[m, j]Binomial[j, n + 2j - 3m], {j, 0, 3m - n}], {m, 0, 5}, {n, 0, 3m}]//Flatten
  • PARI
    for(m=0,7, for(n=0,3*m, print1(sum(j=0,3*m-n, (n!/(2^(n+j-2*m)*3^(m-j)))*binomial(m, j)*binomial(j, n+2*j-3*m)), ", "))) \\ G. C. Greubel, Jan 16 2018

Formula

T(n, k) = k*T(n-1, k-1) + (1/2)*k*(k-1)*T(n-1, k-2) + (1/6)*k*(k-1)*(k-2)*T(n-1, k-3).
E.g.f.: sum(n>=0, T(n, k)*x^k/k!) = (x+x^2/2+x^3/6)^k.

Extensions

Terms a(44) and a(47) corrected by G. C. Greubel, Jan 16 2018
Showing 1-10 of 11 results. Next