cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189072 Semiprimes in A007504 (the sum of first n primes).

Original entry on oeis.org

10, 58, 77, 129, 381, 501, 791, 1371, 1851, 2127, 2427, 2747, 3831, 4227, 4661, 6081, 6338, 7141, 7418, 9206, 9523, 11599, 12718, 15537, 20059, 20546, 21037, 26369, 27517, 29897, 34915, 36227, 45434, 47721, 48494, 49281, 50887, 51698, 52519, 54169, 57547
Offset: 1

Views

Author

Zak Seidov, Apr 16 2011

Keywords

Comments

a(n) = A007504(k(n)), values of k(n) = 3, 7, 8, 10, 16, 18, 22, 28, 32, 34, 36, 38, 44, 46, 48, 54, 55, 58, 59, 65, 66, 72, 75, 82, 92, 93, 94, 104, 106, 110, 118, 120, 133, 136, 137, 138, 140, 141, 142, 144, 148, 150, 154, 156, 164, 168, 170, 174, 190, 194, 202, 210, 212, 218, 224, 226, 232, 234, 236, 244, 246, 249, 250, 256, 264, 272, 276, 277, 286, 294, 298, 300.
Intersection of A007504 and A001358. - Robert Israel, Jun 23 2017

Examples

			10 = 2*5 = A007504(3), 58 = 2*29 = A007504(7), 77 = 7*11 = A007504(8).
		

Crossrefs

Cf. A013918 (primes in A007504).

Programs

  • Maple
    PS:= ListTools:-PartialSums(select(isprime, [2,seq(i,i=3..10^4,2)])):
    select(numtheory:-bigomega = 2, PS); # Robert Israel, Jun 23 2017
  • Mathematica
    semiPrimeQ[n_Integer] := Total[FactorInteger[n]][[2]] == 2; Select[Accumulate[Prime[Range[100]]], semiPrimeQ] (* T. D. Noe, Apr 20 2011 *)
    With[{nn=200},Select[Accumulate[Prime[Range[nn]]],PrimeOmega[#]==2&]] (* Harvey P. Dale, Dec 22 2018 *)
  • PARI
    {a=0;s=[];forprime(p=2,10^4,2==bigomega(a=a+p)&s=concat(s,a));s}