A264885 Numbers in A007504 such that omega(a(n)) = Omega(a(n)) = 3.
238, 874, 2914, 3266, 3638, 4438, 5117, 6601, 7982, 8582, 9854, 10191, 10538, 10887, 11966, 13101, 17283, 19113, 23069, 38238, 40313, 41741, 46191, 53342, 54998, 56690, 68341, 74139, 80189, 84341, 88585, 90763, 95165, 98534, 100838
Offset: 1
Keywords
Examples
For n = 1, k(n) = 13 and a(n) = A007504(13) = 238 = 2*7*17. For n = 2, k(n) = 23 and a(n) = A007504(23) = 874 = 2*19*23. For n = 3, k(n) = 39 and a(n) = A007504(39) = 2914 = 2*31*47. For n = 4, k(n) = 41 and a(n) = A007504(41) = 3266 = 2*23*71. For n = 5, k(n) = 43 and a(n) = A007504(43) = 3638 = 2*17*107. For n = 6, k(n) = 47 and a(n) = A007504(47) = 4438 = 2*7*317. Note that for each of the elements of the sequence, omega(a(n)) = Omega(a(n)) = 3, i.e., the number of prime factors of a(n) = the number of distinct prime factors of a(n) = 3.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 10^4: # to use primes up to N select(t -> numtheory:-bigomega(t)=3 and numtheory:-issqrfree(t), ListTools:-PartialSums(select(isprime,[2,seq(i,i=3..N,2)]))); # Robert Israel, Dec 15 2015
-
Mathematica
t = Accumulate@ Prime@ Range@ 300; Select[Range[2*10^5], And[MemberQ[t, #], PrimeNu@ # == PrimeOmega@ # == 3] &] (* Michael De Vlieger, Nov 27 2015, after Zak Seidov at A007504 *)
-
PARI
lista(nn) = {my(s = 0); for (n=1, nn, s += prime(n); if ((omega(s) == 3) && (bigomega(s)==3), print1(s, ", ")););} \\ Michel Marcus, Nov 28 2015
Comments