A189120 Sum of squares of nonprime divisors of n.
1, 1, 1, 17, 1, 37, 1, 81, 82, 101, 1, 197, 1, 197, 226, 337, 1, 442, 1, 517, 442, 485, 1, 837, 626, 677, 811, 997, 1, 1262, 1, 1361, 1090, 1157, 1226, 1898, 1, 1445, 1522, 2181, 1, 2438, 1, 2437, 2332, 2117, 1, 3397, 2402, 3226, 2602, 3397, 1, 4087, 3026, 4197, 3250, 3365
Offset: 1
Examples
a(12) = 197 because the divisors of 12 are {1, 2, 3, 4, 6, 12}, the subset of nonprime divisors are {1, 4, 6, 12}, and 1^2 + 4^2 + 6^2 + 12^2 = 197.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A189120 := proc(n) local a,d; a := 0 ; for d in numtheory[divisors](n) do if not isprime(d) then a := a+d^2 ; end if; end do: a ; end proc: # R. J. Mathar, Apr 17 2011
-
Mathematica
Table[Total[Select[Divisors[n], ! PrimeQ[#] &]^2], {n, 50}]
Formula
a(n) = Sum_{k|n, k not prime} k^2.
G.f.: Sum_{k>=1} k^2*x^(k+1)/(1 - x^k) - prime(k)^2*x^(prime(k)+1)/(1 - x^prime(k)). - Ilya Gutkovskiy, Jan 01 2017
Comments