cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189120 Sum of squares of nonprime divisors of n.

Original entry on oeis.org

1, 1, 1, 17, 1, 37, 1, 81, 82, 101, 1, 197, 1, 197, 226, 337, 1, 442, 1, 517, 442, 485, 1, 837, 626, 677, 811, 997, 1, 1262, 1, 1361, 1090, 1157, 1226, 1898, 1, 1445, 1522, 2181, 1, 2438, 1, 2437, 2332, 2117, 1, 3397, 2402, 3226, 2602, 3397, 1, 4087, 3026, 4197, 3250, 3365
Offset: 1

Views

Author

Jonathan Vos Post, Apr 17 2011

Keywords

Comments

a(p) = 1 for p prime.

Examples

			a(12) = 197 because the divisors of 12 are {1, 2, 3, 4, 6, 12}, the subset of nonprime divisors are {1, 4, 6, 12}, and 1^2 + 4^2 + 6^2 + 12^2 = 197.
		

Crossrefs

Cf. A023890 (sum of the nonprime divisors of n).

Programs

  • Maple
    A189120 := proc(n) local a,d; a := 0 ; for d in numtheory[divisors](n) do if not isprime(d) then a := a+d^2 ; end if; end do: a ; end proc: # R. J. Mathar, Apr 17 2011
  • Mathematica
    Table[Total[Select[Divisors[n], ! PrimeQ[#] &]^2], {n, 50}]

Formula

a(n) = Sum_{k|n, k not prime} k^2.
G.f.: Sum_{k>=1} k^2*x^(k+1)/(1 - x^k) - prime(k)^2*x^(prime(k)+1)/(1 - x^prime(k)). - Ilya Gutkovskiy, Jan 01 2017
a(n) = A001157(n) - A005063(n). - Wesley Ivan Hurt, Sep 04 2022