cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189176 Row sums of the Riordan matrix (1+x/sqrt(1-4*x),(1-sqrt(1-4*x))/2) (A189175).

Original entry on oeis.org

1, 2, 5, 15, 49, 168, 594, 2145, 7865, 29172, 109174, 411502, 1560090, 5943200, 22732740, 87253605, 335897865, 1296447900, 5015206350, 19439895090, 75487384830, 293595204240, 1143532045500, 4459774977450, 17413705988874, 68067249620328, 266326619546204
Offset: 0

Views

Author

Emanuele Munarini, Apr 18 2011

Keywords

Examples

			a(3) = 15 since the top row of M^3 = (6, 5, 3, 1, 0, 0, 0, ...)
		

Crossrefs

Programs

  • Mathematica
    T[n_,k_] := If[n==k,1,Binomial[2n-k,n-k](n^2+n k-k^2-k)/((2n-k)(2n-k-1))]; Table[Sum[T[n,k], {k,0,n}], {n,0,22}]
  • Maxima
    T(n,k):=if n=k then 1 else binomial(2*n-k,n-k)*(n^2+n*k-k^2-k)/((2*n-k)*(2*n-k-1));
    makelist(sum(T(n,k),k,0,n),n,0,22);

Formula

a(n) = Sum_{k=0..n} binomial(2*n-k,n-k)*(n^2+n*k-k^2-k)/((2*n-k)*(2*n-k-1)), for n>=2.
G.f.: (1-5*x+4*x^2-(1-5*x)*sqrt(1-4x))/(2*x*(1-4*x))
a(n) = Sum_{k=1..n} (3-k)*binomial(2*n-k-1,n-1), n>0, a(0)=1. - Vladimir Kruchinin, Oct 18 2011
From Gary W. Adamson, Nov 14 2011: (Start)
a(n) is the sum of top row terms in M^n, M = an infinite square production matrix as follows, with the Fibonacci sequence as the left border:
1, 1, 0, 0, 0, 0, ...
1, 1, 1, 0, 0, 0, ...
2, 1, 1, 1, 0, 0, ...
3, 1, 1, 1, 1, 0, ...
5, 1, 1, 1, 1, 1, ...
which means the top row of M^n is the n-th row in A189175. (End)
Conjecture: (n+1)*a(n) + 3*(1-3*n)*a(n-1) + 10*(2*n-3)*a(n-2) = 0. - R. J. Mathar, Nov 15 2011
a(n) = Sum_{k=0..n} (k+1) * A090181(n,k). - Alois P. Heinz, Apr 04 2024