cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A098700 Numbers n such that x' = n has no integer solution, where x' is the arithmetic derivative of x.

Original entry on oeis.org

2, 3, 11, 17, 23, 29, 35, 37, 47, 53, 57, 65, 67, 79, 83, 89, 93, 97, 107, 117, 125, 127, 137, 145, 149, 157, 163, 173, 177, 179, 189, 197, 205, 207, 209, 217, 219, 223, 233, 237, 245, 257, 261, 277, 289, 303, 305, 307, 317, 323, 325, 337, 345, 353, 367, 373
Offset: 1

Views

Author

Robert G. Wilson v, Sep 21 2004

Keywords

Comments

If x' = n has solutions, they occur for x <= (n/2)^2. - T. D. Noe, Oct 12 2004
The prime and composite terms are in A189483 and A189554, respectively.
A099302(a(n)) = 0. - Reinhard Zumkeller, Mar 18 2014

Crossrefs

Cf. A003415 (arithmetic derivative of n), A099302 (number of solutions to x' = n), A099303 (greatest x such that x' = n), A098699 (least x such that x' = n).
Cf. A239433 (complement), A002620.
Subsequence of A369464.

Programs

  • Haskell
    a098700 n = a098700_list !! (n-1)
    a098700_list = filter
       (\z -> all (/= z) $ map a003415 [1 .. a002620 z]) [2..]
    -- Reinhard Zumkeller, Mar 18 2014
    
  • Mathematica
    a[1] = 0; a[n_] := Block[{f = Transpose[ FactorInteger[ n]]}, If[ PrimeQ[n], 1, Plus @@ (n*f[[2]]/f[[1]])]]; b = Table[ -1, {500}]; b[[1]] = 1; Do[c = a[n]; If[c < 500 && b[[c + 1]] == 0, b[[c + 1]] = n], {n, 10^6}]; Select[ Range[500], b[[ # ]] == 0 &]
    dn[0]=0; dn[1]=0; dn[n_]:=Module[{f=Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Plus@@(n*f[[2]]/f[[1]])]]; d1=Table[dn[n], {n, 40000}]; Select[Range[400], 0==Count[d1, # ]&]
  • PARI
    list(lim)=my(v=List()); lim\=1; forfactored(n=1, lim^2, my(f=n[2],t); listput(v, n[1]*sum(i=1, #f~, f[i, 2]/f[i, 1]))); setminus([1..lim], Set(v)); \\ Charles R Greathouse IV, Oct 21 2021
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A098700_gen(startvalue=2): # generator of terms >= startvalue
        return filter(lambda n:all(map(lambda m:sum((m*e//p for p,e in factorint(m).items())) != n,range(1,(n**2>>1)+1))),count(max(startvalue,2)))
    A098700_list = list(islice(A098700_gen(),30)) # Chai Wah Wu, Sep 12 2022

Extensions

Corrected and extended by T. D. Noe, Oct 12 2004

A351095 Semiprimes that are not the arithmetic derivative (A003415) of any integer.

Original entry on oeis.org

35, 57, 65, 93, 145, 177, 205, 209, 217, 219, 237, 289, 303, 305, 323, 377, 393, 413, 415, 427, 453, 473, 485, 497, 515, 517, 529, 533, 537, 553, 597, 629, 681, 697, 699, 713, 749, 781, 785, 793, 817, 835, 849, 869, 895, 917, 933, 965, 989, 1037, 1057, 1059, 1077, 1081, 1133, 1137, 1145, 1149, 1159, 1169, 1227, 1243
Offset: 1

Views

Author

Antti Karttunen, Feb 03 2022

Keywords

Comments

17^2 = 289 and 23^2 = 529 are the first squares present.

Crossrefs

Complement of A351096 in A001358. Subsequence of A098700 and of A189554.

Programs

  • PARI
    A002620(n) = ((n^2)>>2);
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    isA351095(n) = if(2!=bigomega(n), 0, for(k=1,A002620(n),if(A003415(k)==n,return(0))); (1));
Showing 1-2 of 2 results.