A213619
Let m be the n-th hyperoperation applied to n (see A189896). a(n) is the m-th hyperoperation applied to n and m.
Original entry on oeis.org
a(0) = H_H_0(0,0)(0,H_0(0,0)) = H_1(0,1) = 0+1 = 1.
a(1) = H_H_1(1,1)(1,H_1(1,1)) = H_2(1,1+1) = 1*(1+1) = 2.
a(2) = H_H_2(2,2)(2,H_2(2,2)) = H_4(2,2*2) = H_3(2,H_3(2,H_3(2,2))) = 2^2^2^2 = 2^2^4 = 2^16 = 65536.
A054871
a(n) = H_n(3,2) where H_n is the n-th hyperoperator.
Original entry on oeis.org
3, 5, 6, 9, 27, 7625597484987
Offset: 0
a(0) = H_0(3,2) = 2+1 = 3;
a(1) = H_1(3,2) = 3+2 = 5;
a(2) = H_2(3,2) = 3*2 = 3+3 = 6;
a(3) = H_3(3,2) = 3^2 = 3*3 = 9;
a(4) = H_4(3,2) = 3^^2 = 3^3 = 27;
a(5) = H_5(3,2) = 3^^^2 = 3^^3 = 3^(3^3) = 7625597484987.
- John H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, p. 60.
- Rick Norwood, Math. Bite: Why 2 + 2 = 2 * 2, Mathematics Magazine, Vol. 71 (1998), p. 60.
- Stephen R. Wassell, Superexponentiation and Fixed Points of Exponential and Logarithmic Functions, Mathematics Magazine, Vol. 73 (2000), pp. 111-119.
- Eric Weisstein's MathWorld, Ackermann Function and Power Tower
- Wikipedia, Hyperoperation
- Index Section Ho-Hy
H_n(x,y) for various x,y:
A001695 (2,n), this sequence (3,2; almost 3,3),
A067652 (2,3; almost 2,4),
A141044 (1,1),
A175796 (n,2),
A179184 (0,0),
A189896 (n,n),
A213619 (n,H_n(n,n)),
A253855 (4,2; almost 4,4),
A255176 (2,2),
A255340 (4,3),
A256131 (10,2; almost 10,10),
A261143 (1,2),
A261146 (n,3). -
Natan Arie Consigli and
Danny Rorabaugh, Oct 14-26 2015
First term corrected and hyperoperator notation implemented by
Danny Rorabaugh, Oct 14 2015
A046859
Simplified Ackermann function (main diagonal of Ackermann-Péter function).
Original entry on oeis.org
From _Natan Arie Consigli_, Apr 10 2016: (Start)
a(0) = 2[0](0+3)-3 = 1;
a(1) = 2[1](1+3)-3 = 3;
a(2) = 2[2](2+3)-3 = 7;
a(3) = 2[3](3+3)-3 = 61;
a(4) = 2[4](4+3)-3 = 2^(2^(2^65536)) - 3. (End)
- Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, p. 60, 1996.
- G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
- H. Hermes, Aufzaehlbarkeit, Entscheidbarkeit, Berechenbarkeit: Einfuehrung in die Theorie der rekursiven Funktionen (3rd ed., Springer, 1978), 83-89.
- H. Hermes, ditto, 2nd ed. also available in English (Springer, 1969), ch. 13
Cf.
A054871,
A189896 (sequences involving variants of the three-argument Ackermann's Function).
Cf.
A260002-
A260006 (sequences with Sudan's function, another computable but not primitive recursive function).
Cf.
A266201 (Goodstein's function, total and not primitive recursive).
A260002
Sudan Numbers: a(n)= f(n,n,n) where f is the Sudan function.
Original entry on oeis.org
0, 3, 15569256417
Offset: 0
a(1) = f(1,1,1) = f(0, f(1,1,0), f(1,1,0)+1) = f(0, 1, 2) = 1+2 = 3.
-
f[z_, x_, y_] := f[z, x, y] =
Piecewise[{{x + y, z == 0}, {x,
z > 0 && y == 0}, {f[z - 1, f[z, x, y - 1], f[z, x, y - 1] + y],
z > 0 && y > 0} }];
a[n_] := f[n,n,n]
-
f(z,x,y)=if(z,if(y,my(t=f(z,x,y-1)); f(z-1, t, t+y),x),x+y)
a(n)=f(n,n,n) \\ Charles R Greathouse IV, Jul 28 2015
A264930
a(n) = nn where xy is a right associative hyperoperation.
Original entry on oeis.org
1, 2, 4, 27, 340282366920938463463374607431768211456
Offset: 0
a(0) = 0+1 = 1;
a(1) = 1+1 = 2;
a(2) = 2*2 = 4;
a(3) = 3^3 = 27;
a(4) = ((4^4)^4)^4 = 340282366920938463463374607431768211456;
a(5) = 5<5>5 = (((((5<4>5)<4>5)<4>5)<4>5)<4>5)<4>5.
A375730
a(n) = n^n + n*n + n+n + 1.
Original entry on oeis.org
2, 5, 13, 43, 281, 3161, 46705, 823607, 16777297, 387420589, 10000000121, 285311670755, 8916100448425, 302875106592449, 11112006825558241, 437893890380859631, 18446744073709551905, 827240261886336764501, 39346408075296537575785, 1978419655660313589124379
Offset: 0
a(0) = (0^0)+(0*0)+(0+0)+1 = 1+0+0+1 = 2.
a(3) = (3^3)+(3*3)+(3+3)+1 = 27+9+6+1 = 43.
A275203
Hyperoperations using consecutive integers.
Original entry on oeis.org
a(0) = H_0(null,0) = 0+1 = 1.
a(1) = H_1(1,1) = 1+1 = 2.
a(2) = H_2(2,2) = 2*2 = 4.
a(3) = H_3(4,3) = 4^3 = 64.
a(4) = H_4(64,4) = 64^(64^(64^64)).
A302349
a(n) = F_n(n,n), where F is the Clenshaw-Olver hyper-operation hierarchy.
Original entry on oeis.org
1, 2, 4, 9, 13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096
Offset: 0
F_0(0,0) = 0+1 = 1;
F_1(1,1) = 1+1 = 2;
F_2(2,2) = 2*2 = 4;
F_3(a,b) = 3^3 = 9;
F_4(a,b) = 4[4](4-1) = 4^4^4 = ...
- C. W. Clenshaw and F. W. J. Olver, Beyond floating point, Journal of the ACM. 31 (2) April 1984, pp. 319-328.
Cf.
A054871,
A189896 (same instance using traditional hyper-operation hierarchy).
Showing 1-9 of 9 results.
Comments