A190089
Row sums of the triangular matrix A190088.
Original entry on oeis.org
1, 4, 21, 114, 616, 3329, 17991, 97229, 525456, 2839729, 15346786, 82938844, 448227521, 2422362079, 13091204281, 70748973084, 382349636061, 2066337330754, 11167134898976, 60350698792449, 326154101090951, 1762639037938629, 9525854090667496, 51480702630305689, 278217860370802066
Offset: 0
-
[(&+[Binomial(3*n-k+1,3*n-3*k+1): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Mar 04 2018
-
Table[Sum[Binomial[3n - k + 1, 3n - 3k + 1], {k, 0, n}], {n, 0, 12}]
LinearRecurrence[{5,2,1},{1,4,21},30] (* Harvey P. Dale, Sep 18 2013 *)
-
makelist(sum(binomial(3*n-k+1,3*n-3*k+1),k,0,n),n,0,24);
-
Vec((1-x-x^2)/(1-5*x-2*x^2-x^3)+O(x^99)) \\ Charles R Greathouse IV, Jun 30 2011
A190090
Diagonal sums of the triangular matrix A190088.
Original entry on oeis.org
1, 1, 4, 16, 42, 137, 443, 1365, 4316, 13625, 42785, 134758, 424331, 1335378, 4203927, 13233947, 41657808, 131135696, 412803240, 1299458257, 4090567673, 12876698159, 40534529294, 127598621869, 401667591501, 1264408966284, 3980231826575, 12529367967276, 39441185140197
Offset: 0
-
[(&+[Binomial(3*n-4*k+1,3*n-6*k+1): k in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, Mar 04 2018
-
Table[Sum[Binomial[3n - 4k + 1, 3n - 6k + 1], {k, 0, n/2}], {n, 0, 26}]
LinearRecurrence[{2,2,6,-3,0,1},{1,1,4,16,42,137},27] (* Harvey P. Dale, Jul 04 2011 *)
-
makelist(sum(binomial(3*n-4*k+1,3*n-6*k+1),k,0,n/2),n,0,12);
-
Vec((1-x-x^4)/(1-2*x-2*x^2-6*x^3+3*x^4-x^6)+O(x^29)) \\ Charles R Greathouse IV, Jun 30 2011
A190152
Triangle of binomial coefficients binomial(3*n-k,3*n-3*k).
Original entry on oeis.org
1, 1, 1, 1, 10, 1, 1, 28, 35, 1, 1, 55, 210, 84, 1, 1, 91, 715, 924, 165, 1, 1, 136, 1820, 5005, 3003, 286, 1, 1, 190, 3876, 18564, 24310, 8008, 455, 1, 1, 253, 7315, 54264, 125970, 92378, 18564, 680, 1, 1, 325, 12650, 134596, 490314, 646646, 293930, 38760, 969, 1
Offset: 0
Triangle begins:
1
1, 1
1, 10, 1
1, 28, 35, 1
1, 55, 210, 84, 1
1, 91, 715, 924, 165, 1
1, 136, 1820, 5005, 3003, 286, 1
1, 190, 3876, 18564, 24310, 8008, 455, 1
1, 253, 7315, 54264, 125970, 92378, 18564, 680, 1
...
-
Flatten[Table[Binomial[3n - k, 3n - 3k], {n, 0, 9}, {k, 0, n}]]
-
create_list(binomial(3*n-k,3*n-3*k),n,0,9,k,0,n);
-
for(n=0,10, for(k=0,n, print1(binomial(3*n-k, 3*(n-k)), ", "))) \\ G. C. Greubel, Dec 29 2017
Showing 1-3 of 3 results.
Comments