cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A190153 Row sums of the triangle A190152.

Original entry on oeis.org

1, 2, 12, 65, 351, 1897, 10252, 55405, 299426, 1618192, 8745217, 47261895, 255418101, 1380359512, 7459895657, 40315615410, 217878227876, 1177482265857, 6363483400447, 34390259761825, 185855747875876, 1004422742303477, 5428215467030962
Offset: 0

Views

Author

Emanuele Munarini, May 05 2011

Keywords

Crossrefs

Programs

  • Magma
    I:=[1, 2, 12]; [n le 3 select I[n] else 5*Self(n-1) +2*Self(n-2) + Self(n-3): n in [1..30]]; // G. C. Greubel, Dec 30 2017
  • Maple
    seq(add(binomial(3*n-k,3*n-3*k), k=0..n), n=0..20);
  • Mathematica
    Table[Sum[Binomial[3n - k, 3n - 3k], {k, 0, n}], {n, 0, 22}]
    LinearRecurrence[{5,2,1}, {1,2,12}, 30] (* G. C. Greubel, Dec 30 2017 *)
  • Maxima
    makelist(sum(binomial(3*n-k,3*n-3*k),k,0,n),n,0,22);
    
  • PARI
    x='x+O('x^30); Vec((1-3*x)/(1-5*x-2*x^2-x^3)) \\ G. C. Greubel, Dec 30 2017
    

Formula

a(n) = Sum_{k=0..n} binomial(3*n-k,3*n-3*k).
From Colin Barker, Mar 21 2012: (Start)
a(n) = 5*a(n-1) + 2*a(n-2) + a(n-3).
G.f.: (1-3*x)/(1-5*x-2*x^2-x^3). (End)

A190154 Diagonal sums of the triangle A190152.

Original entry on oeis.org

1, 1, 2, 11, 30, 91, 303, 936, 2936, 9300, 29209, 91917, 289547, 911218, 2868341, 9029949, 28424456, 89477119, 281667368, 886657081, 2791106585, 8786130132, 27657838272, 87064082194, 274068969337, 862741399379, 2715822822365, 8549136143060, 26911817257385
Offset: 0

Views

Author

Emanuele Munarini, May 05 2011

Keywords

Crossrefs

Programs

  • Maple
    seq(add(binomial(3*n-4*k,3*n-6*k), k=0..floor(n/2)), n=0..20);
  • Mathematica
    Table[Sum[Binomial[3n-4k,3n-6k],{k,0,n/2}],{n,0,28}]
  • Maxima
    makelist(sum(binomial(3*n-4*k,3*n-6*k),k,0,n/2),n,0,28);
    
  • PARI
    for(n=0,30, print1(sum(k=0,floor(n/2), binomial(3*n-4*k,3*n-6*k)), ", ")) \\ G. C. Greubel, Dec 30 2017

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(3*n-4*k,3*n-6*k).
Conjecture: G.f. ( -1+x+x^3-x^4+2*x^2 ) / ( (x^3-3*x^2+4*x-1)*(x^3+3*x^2+2*x+1) ). - R. J. Mathar, Mar 15 2013

A000447 a(n) = 1^2 + 3^2 + 5^2 + 7^2 + ... + (2*n-1)^2 = n*(4*n^2 - 1)/3.

Original entry on oeis.org

0, 1, 10, 35, 84, 165, 286, 455, 680, 969, 1330, 1771, 2300, 2925, 3654, 4495, 5456, 6545, 7770, 9139, 10660, 12341, 14190, 16215, 18424, 20825, 23426, 26235, 29260, 32509, 35990, 39711, 43680, 47905, 52394, 57155, 62196, 67525, 73150, 79079, 85320, 91881, 98770, 105995, 113564, 121485
Offset: 0

Views

Author

Keywords

Comments

4 times the variance of the area under an n-step random walk: e.g., with three steps, the area can be 9/2, 7/2, 3/2, 1/2, -1/2, -3/2, -7/2, or -9/2 each with probability 1/8, giving a variance of 35/4 or a(3)/4. - Henry Bottomley, Jul 14 2003
Number of standard tableaux of shape (2n-1,1,1,1) (n>=1). - Emeric Deutsch, May 30 2004
Also a(n) = (1/6)*(8*n^3-2*n), n>0: structured octagonal diamond numbers (vertex structure 9). Cf. A059722 = alternate vertex; A000447 = structured diamonds; and structured tetragonal anti-diamond numbers (vertex structure 9). Cf. A096000 = alternate vertex; A100188 = structured anti-diamonds. Cf. A100145 for more on structured numbers. - James A. Record (james.record(AT)gmail.com), Nov 07 2004
The n-th tetrahedral (or pyramidal) number is n(n+1)(n+2)/6. This sequence contains the tetrahedral numbers of A000292 obtained for n= 1,3,5,7,... (see A015219). - Valentin Bakoev, Mar 03 2009
Using three consecutive numbers u, v, w, (u+v+w)^3-(u^3+v^3+w^3) equals 18 times the numbers in this sequence. - J. M. Bergot, Aug 24 2011
This sequence is related to A070893 by A070893(2*n-1) = n*a(n)-sum(i=0..n-1, a(i)). - Bruno Berselli, Aug 26 2011
Number of integer solutions to 1-n <= x <= y <= z <= n-1. - Michael Somos, Dec 27 2011
Partial sums of A016754. - Reinhard Zumkeller, Apr 02 2012
Also the number of cubes in the n-th Haüy square pyramid. - Eric W. Weisstein, Sep 27 2017

Examples

			G.f. = x + 10*x^2 + 35*x^3 + 84*x^4 + 165*x^5 + 286*x^6 + 455*x^7 + 680*x^8 + ...
a(2) = 10 since (-1, -1, -1), (-1, -1, 0), (-1, -1, 1), (-1, 0, 0), (-1, 0, 1), (-1, 1, 1), (0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1) are the 10 solutions (x, y, z) of -1 <= x <= y <= z <= 1.
a(0) = 0, which corresponds to the empty sum.
		

References

  • G. Chrystal, Textbook of Algebra, Vol. 1, A. & C. Black, 1886, Chap. XX, Sect. 10, Example 2.
  • F. E. Croxton and D. J. Cowden, Applied General Statistics. 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1955, p. 742.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 140.
  • C. V. Durell, Advanced Algebra, Volume 1, G. Bell & Son, 1932, Exercise IIIe, No. 4.
  • L. B. W. Jolley, Summation of Series. 2nd ed., Dover, NY, 1961, p. 7.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

(1/12)*t*(n^3-n)+n for t = 2, 4, 6, ... gives A004006, A006527, A006003, A005900, A004068, A000578, A004126, A000447, A004188, A004466, A004467, A007588, A062025, A063521, A063522, A063523.
Column 1 in triangles A008956 and A008958.
A000447 is related to partitions of 2^n into powers of 2, as it is shown in the formula, example and cross-references of A002577. - Valentin Bakoev, Mar 03 2009

Programs

Formula

a(n) = binomial(2*n+1, 3) = A000292(2*n-1).
G.f.: x*(1+6*x+x^2)/(1-x)^4.
a(n) = -a(-n) for all n in Z.
a(n) = A000330(2*n)-4*A000330(n) = A000466(n)*n/3 = A000578(n)+A007290(n-2) = A000583(n)-2*A024196(n-1) = A035328(n)/3. - Henry Bottomley, Jul 14 2003
a(n+1) = (2*n+1)*(2*n+2)(2*n+3)/6. - Valentin Bakoev, Mar 03 2009
a(0)=0, a(1)=1, a(2)=10, a(3)=35, a(n)=4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Harvey P. Dale, May 25 2012
a(n) = v(n,n-1), where v(n,k) is the central factorial numbers of the first kind with odd indices. - Mircea Merca, Jan 25 2014
a(n) = A005917(n+1) - A100157(n+1), where A005917 are the rhombic dodecahedral numbers and A100157 are the structured rhombic dodecahedral numbers (vertex structure 9). - Peter M. Chema, Jan 09 2016
For any nonnegative integers m and n, 8*(n^3)*a(m) + 2*m*a(n) = a(2*m*n). - Ivan N. Ianakiev, Mar 04 2017
E.g.f.: exp(x)*x*(1 + 4*x + (4/3)*x^2). - Wolfdieter Lang, Mar 11 2017
a(n) = A002412(n) + A016061(n-1), for n>0. - Bruce J. Nicholson, Nov 12 2017
From Amiram Eldar, Jan 04 2022: (Start)
Sum_{n>=1} 1/a(n) = 6*log(2) - 3.
Sum_{n>=1} (-1)^(n+1)/a(n) = 3 - 3*log(2). (End)

Extensions

Chrystal and Durell references from R. K. Guy, Apr 02 2004

A060544 Centered 9-gonal (also known as nonagonal or enneagonal) numbers. Every third triangular number, starting with a(1)=1.

Original entry on oeis.org

1, 10, 28, 55, 91, 136, 190, 253, 325, 406, 496, 595, 703, 820, 946, 1081, 1225, 1378, 1540, 1711, 1891, 2080, 2278, 2485, 2701, 2926, 3160, 3403, 3655, 3916, 4186, 4465, 4753, 5050, 5356, 5671, 5995, 6328, 6670, 7021, 7381, 7750, 8128, 8515, 8911, 9316
Offset: 1

Views

Author

Henry Bottomley, Apr 02 2001

Keywords

Comments

Triangular numbers not == 0 (mod 3). - Amarnath Murthy, Nov 13 2005
Shallow diagonal of triangular spiral in A051682. - Paul Barry, Mar 15 2003
Equals the triangular numbers convolved with [1, 7, 1, 0, 0, 0, ...]. - Gary W. Adamson & Alexander R. Povolotsky, May 29 2009
a(n) is congruent to 1 (mod 9) for all n. The sequence of digital roots of the a(n) is A000012(n). The sequence of units' digits of the a(n) is period 20: repeat [1, 0, 8, 5, 1, 6, 0, 3, 5, 6, 6, 5, 3, 0, 6, 1, 5, 8, 0, 1]. - Ant King, Jun 18 2012
Divide each side of any triangle ABC with area (ABC) into 2n + 1 equal segments by 2n points: A_1, A_2, ..., A_(2n) on side a, and similarly for sides b and c. If the hexagon with area (Hex(n)) delimited by AA_n, AA_(n+1), BB_n, BB_(n+1), CC_n and CC_(n+1) cevians, we have a(n+1) = (ABC)/(Hex(n)) for n >= 1, (see link with java applet). - Ignacio Larrosa Cañestro, Jan 02 2015; edited by Wolfdieter Lang, Jan 30 2015
For the case n = 1 see the link for Marion's Theorem (actually Marion Walter's Theorem, see the Cugo et al, reference). Also, the generalization considered here has been called there (Ryan) Morgan's Theorem. - Wolfdieter Lang, Jan 30 2015
Pollock states that every number is the sum of at most 11 terms of this sequence, but note that "1, 10, 28, 35, &c." has a typo (35 should be 55). - Michel Marcus, Nov 04 2017
a(n) is also the number of (nontrivial) paths as well as the Wiener sum index of the (n-1)-alkane graph. - Eric W. Weisstein, Jul 15 2021

Crossrefs

Programs

  • GAP
    List([1..50],n->(2*n-1)^2+(n-1)*n/2); # Muniru A Asiru, Mar 01 2019
    
  • Magma
    [(2*n-1)^2+(n-1)*n/2: n in [1..50]]; // Vincenzo Librandi, Nov 18 2015
    
  • Maple
    H := n -> simplify(1/hypergeom([-3*n,3*n+3,1],[3/2,2],3/4)); A060544 := n -> H(n-1); seq(A060544(i),i=1..19); # Peter Luschny, Jan 09 2012
  • Mathematica
    Take[Accumulate[Range[150]], {1, -1, 3}] (* Harvey P. Dale, Mar 11 2013 *)
    LinearRecurrence[{3, -3, 1}, {1, 10, 28}, 50] (* Harvey P. Dale, Mar 11 2013 *)
    FoldList[#1 + #2 &, 1, 9 Range @ 50] (* Robert G. Wilson v, Feb 02 2011 *)
    Table[(3 n - 1) (3 n - 2)/2, {n, 20}] (* Eric W. Weisstein, Jul 15 2021 *)
    Table[Binomial[3 n - 1, 2], {n, 20}] (* Eric W. Weisstein, Jul 15 2021 *)
    Table[PolygonalNumber[3 n - 2], {n, 20}] (* Eric W. Weisstein, Jul 15 2021 *)
  • PARI
    a(n)=(3*n-1)*(3*n-2)/2
    
  • Sage
    [(3*n-1)*(3*n-2)/2 for n in (1..50)] # G. C. Greubel, Mar 02 2019

Formula

a(n) = C(3*n, 3)/n = (3*n-1)*(3*n-2)/2 = A001504(n-1)/2.
a(n) = a(n-1) + 9*(n-1) = A060543(n, 3) = A006566(n)/n.
a(n) = A025035(n)/A025035(n-1) = A027468(n-1) + 1 = A000217(3*n-2).
a(1-n) = a(n).
From Paul Barry, Mar 15 2003: (Start)
a(n) = C(n-1, 0) + 9*C(n-1, 1) + 9*C(n-1, 2); binomial transform of (1, 9, 9, 0, 0, 0, ...).
a(n) = 9*A000217(n-1) + 1.
G.f.: x*(1 + 7*x + x^2)/(1-x)^3. (End)
Narayana transform (A001263) of [1, 9, 0, 0, 0, ...]. - Gary W. Adamson, Dec 29 2007
a(n-1) = Pochhammer(4,3*n)/(Pochhammer(2,n)*Pochhammer(n+1,2*n)).
a(n-1) = 1/Hypergeometric([-3*n,3*n+3,1],[3/2,2],3/4). - Peter Luschny, Jan 09 2012
From Ant King, Jun 18 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = 2*a(n-1) - a(n-2) + 9.
a(n) = A000217(n) + 7*A000217(n-1) + A000217(n-2).
Sum_{n>=1} 1/a(n) = 2*Pi/(3*sqrt(3)) = A248897.
(End)
a(n) = (2*n-1)^2 + (n-1)*n/2. - Ivan N. Ianakiev, Nov 18 2015
a(n) = A101321(9,n-1). - R. J. Mathar, Jul 28 2016
E.g.f.: (2 + 9*x^2)*exp(x)/2 - 1. - G. C. Greubel, Mar 02 2019
From Amiram Eldar, Jun 20 2020: (Start)
Sum_{n>=1} a(n)/n! = 11*e/2 - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 11/(2*e) - 1. (End)
a(n) = A000567(n) + A005449(n-1) (see illustration in links). - John Elias, Nov 10 2020
a(n) = P(2*n,4)*P(3*n,3)/24 for n>=2, where P(s,k) = ((s - 2)*k^2 - (s - 4)*k)/2 is the k-th s-gonal number. - Lechoslaw Ratajczak, Jul 18 2021

Extensions

Additional description from Terrel Trotter, Jr., Apr 06 2002
Formulas by Paul Berry corrected for offset 1 by Wolfdieter Lang, Jan 30 2015

A053135 Binomial coefficients C(2*n+6,6).

Original entry on oeis.org

1, 28, 210, 924, 3003, 8008, 18564, 38760, 74613, 134596, 230230, 376740, 593775, 906192, 1344904, 1947792, 2760681, 3838380, 5245786, 7059052, 9366819, 12271512, 15890700, 20358520, 25827165, 32468436, 40475358, 50063860, 61474519, 74974368, 90858768
Offset: 0

Views

Author

Keywords

Comments

Even-indexed members of seventh column of Pascal's triangle A007318.
Number of standard tableaux of shape (2n+1,1^6). - Emeric Deutsch, May 30 2004

Crossrefs

Programs

  • Magma
    [Binomial(2*n+6, 6): n in [0..30]]; // G. C. Greubel, Sep 03 2018
  • Maple
    seq(binomial(2*n+6,6),n=0..40); # Nathaniel Johnston, May 14 2011
  • Mathematica
    Table[Binomial[2*n+6, 6], {n, 0, 30}] (* G. C. Greubel, Sep 03 2018 *)
  • PARI
    vector(30,n,n--; binomial(2*n+6, 6)) \\ G. C. Greubel, Sep 03 2018
    

Formula

G.f.: (1 + 21*x + 35*x^2 + 7*x^3)/(1-x)^7.
a(n) = binomial(2*n+6, 6) = A000579(2*n+6).
a(n) = A000384(n+1)*A000384(n+2)*A000384(n+3)/90. - Bruno Berselli, Nov 12 2014
E.g.f.: (90 + 2430*x + 6975*x^2 + 5655*x^3 + 1710*x^4 + 204*x^5 + 8*x^6)* exp(x)/90. - G. C. Greubel, Sep 03 2018
From Amiram Eldar, Oct 21 2022: (Start)
Sum_{n>=0} 1/a(n) = 96*log(2) - 131/2.
Sum_{n>=0} (-1)^n/a(n) = 23/2 - 6*Pi + 12*log(2). (End)
Showing 1-5 of 5 results.