Original entry on oeis.org
1, 2, 12, 65, 351, 1897, 10252, 55405, 299426, 1618192, 8745217, 47261895, 255418101, 1380359512, 7459895657, 40315615410, 217878227876, 1177482265857, 6363483400447, 34390259761825, 185855747875876, 1004422742303477, 5428215467030962
Offset: 0
-
I:=[1, 2, 12]; [n le 3 select I[n] else 5*Self(n-1) +2*Self(n-2) + Self(n-3): n in [1..30]]; // G. C. Greubel, Dec 30 2017
-
seq(add(binomial(3*n-k,3*n-3*k), k=0..n), n=0..20);
-
Table[Sum[Binomial[3n - k, 3n - 3k], {k, 0, n}], {n, 0, 22}]
LinearRecurrence[{5,2,1}, {1,2,12}, 30] (* G. C. Greubel, Dec 30 2017 *)
-
makelist(sum(binomial(3*n-k,3*n-3*k),k,0,n),n,0,22);
-
x='x+O('x^30); Vec((1-3*x)/(1-5*x-2*x^2-x^3)) \\ G. C. Greubel, Dec 30 2017
A190154
Diagonal sums of the triangle A190152.
Original entry on oeis.org
1, 1, 2, 11, 30, 91, 303, 936, 2936, 9300, 29209, 91917, 289547, 911218, 2868341, 9029949, 28424456, 89477119, 281667368, 886657081, 2791106585, 8786130132, 27657838272, 87064082194, 274068969337, 862741399379, 2715822822365, 8549136143060, 26911817257385
Offset: 0
-
seq(add(binomial(3*n-4*k,3*n-6*k), k=0..floor(n/2)), n=0..20);
-
Table[Sum[Binomial[3n-4k,3n-6k],{k,0,n/2}],{n,0,28}]
-
makelist(sum(binomial(3*n-4*k,3*n-6*k),k,0,n/2),n,0,28);
-
for(n=0,30, print1(sum(k=0,floor(n/2), binomial(3*n-4*k,3*n-6*k)), ", ")) \\ G. C. Greubel, Dec 30 2017
A000447
a(n) = 1^2 + 3^2 + 5^2 + 7^2 + ... + (2*n-1)^2 = n*(4*n^2 - 1)/3.
Original entry on oeis.org
0, 1, 10, 35, 84, 165, 286, 455, 680, 969, 1330, 1771, 2300, 2925, 3654, 4495, 5456, 6545, 7770, 9139, 10660, 12341, 14190, 16215, 18424, 20825, 23426, 26235, 29260, 32509, 35990, 39711, 43680, 47905, 52394, 57155, 62196, 67525, 73150, 79079, 85320, 91881, 98770, 105995, 113564, 121485
Offset: 0
G.f. = x + 10*x^2 + 35*x^3 + 84*x^4 + 165*x^5 + 286*x^6 + 455*x^7 + 680*x^8 + ...
a(2) = 10 since (-1, -1, -1), (-1, -1, 0), (-1, -1, 1), (-1, 0, 0), (-1, 0, 1), (-1, 1, 1), (0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1) are the 10 solutions (x, y, z) of -1 <= x <= y <= z <= 1.
a(0) = 0, which corresponds to the empty sum.
- G. Chrystal, Textbook of Algebra, Vol. 1, A. & C. Black, 1886, Chap. XX, Sect. 10, Example 2.
- F. E. Croxton and D. J. Cowden, Applied General Statistics. 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1955, p. 742.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 140.
- C. V. Durell, Advanced Algebra, Volume 1, G. Bell & Son, 1932, Exercise IIIe, No. 4.
- L. B. W. Jolley, Summation of Series. 2nd ed., Dover, NY, 1961, p. 7.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- J. L. Bailey, A table to facilitate the fitting of certain logistic curves, Annals Math. Stat., Vol. 2 (1931), pp. 355-359. [Annotated scanned copy]
- Valentin Bakoev, Algorithmic approach to counting of certain types m-ary partitions, Discrete Mathematics, Vol. 275 (2004), pp. 17-41. - _Valentin Bakoev_, Mar 03 2009
- F. E. Croxton and D. J. Cowden, Applied General Statistics, 2nd Ed., Prentice-Hall, Englewood Cliffs, NJ, 1955 [Annotated scans of just pages 742-743]
- Milan Janjic, Two Enumerative Functions.
- T. P. Martin, Shells of atoms, Phys. Reports, Vol. 273 (1996), pp. 199-241, eq. (11).
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Eric Weisstein's World of Mathematics, Haüy Construction.
- Eric Weisstein's World of Mathematics, Square Pyramid.
- Index entries for two-way infinite sequences.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
(1/12)*t*(n^3-n)+n for t = 2, 4, 6, ... gives
A004006,
A006527,
A006003,
A005900,
A004068,
A000578,
A004126,
A000447,
A004188,
A004466,
A004467,
A007588,
A062025,
A063521,
A063522,
A063523.
A000447 is related to partitions of 2^n into powers of 2, as it is shown in the formula, example and cross-references of
A002577. -
Valentin Bakoev, Mar 03 2009
-
a000447 n = a000447_list !! n
a000447_list = scanl1 (+) a016754_list
-- Reinhard Zumkeller, Apr 02 2012
-
[n*(4*n^2-1)/3: n in [0..50]]; // Vincenzo Librandi, Jan 12 2016
-
A000447:=z*(1+6*z+z**2)/(z-1)**4; # Simon Plouffe, 1992 dissertation.
A000447:=n->n*(4*n^2 - 1)/3; seq(A000447(n), n=0..50); # Wesley Ivan Hurt, Mar 30 2014
-
Table[n (4 n^2 - 1)/3, {n, 0, 80}] (* Vladimir Joseph Stephan Orlovsky, Apr 18 2011 *)
LinearRecurrence[{4, -6, 4, -1}, {0, 1, 10, 35}, 80] (* Harvey P. Dale, May 25 2012 *)
Join[{0}, Accumulate[Range[1, 81, 2]^2]] (* Harvey P. Dale, Jul 18 2013 *)
CoefficientList[Series[x (1 + 6 x + x^2)/(-1 + x)^4, {x, 0, 20}], x] (* Eric W. Weisstein, Sep 27 2017 *)
-
A000447(n):=n*(4*n^2 - 1)/3$ makelist(A000447(n),n,0,20); /* Martin Ettl, Jan 07 2013 */
-
{a(n) = n * (4*n^2 - 1) / 3};
-
concat(0, Vec(x*(1+6*x+x^2)/(1-x)^4 + O(x^100))) \\ Altug Alkan, Jan 11 2016
-
def A000447(n): return n*((n**2<<2)-1)//3 # Chai Wah Wu, Feb 12 2023
Chrystal and Durell references from
R. K. Guy, Apr 02 2004
A060544
Centered 9-gonal (also known as nonagonal or enneagonal) numbers. Every third triangular number, starting with a(1)=1.
Original entry on oeis.org
1, 10, 28, 55, 91, 136, 190, 253, 325, 406, 496, 595, 703, 820, 946, 1081, 1225, 1378, 1540, 1711, 1891, 2080, 2278, 2485, 2701, 2926, 3160, 3403, 3655, 3916, 4186, 4465, 4753, 5050, 5356, 5671, 5995, 6328, 6670, 7021, 7381, 7750, 8128, 8515, 8911, 9316
Offset: 1
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Ignacio Larrosa Cañestro, Hexágono y estrella determinados por tres pares de cevianas simétricas, (java applet).
- Al Cugo et al., Marion's theorem, The Mathematics Teacher 86 (1993) p. 619.
- John Elias, Illustration of Initial Terms
- F. Pollock, On the Extension of the Principle of Fermat's Theorem of the Polygonal Numbers to the Higher Orders of Series Whose Ultimate Differences Are Constant. With a New Theorem Proposed, Applicable to All the Orders, Abs. Papers Commun. Roy. Soc. London 5, 922-924, 1843-1850.
- Eric Weisstein's World of Mathematics, Alkane Graph
- Eric Weisstein's World of Mathematics, Graph Path
- Eric Weisstein's World of Mathematics, Marion's Theorem
- Eric Weisstein's World of Mathematics, Wiener Sum Index
- Index entries for two-way infinite sequences
- Index entries for sequences related to centered polygonal numbers
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
List([1..50],n->(2*n-1)^2+(n-1)*n/2); # Muniru A Asiru, Mar 01 2019
-
[(2*n-1)^2+(n-1)*n/2: n in [1..50]]; // Vincenzo Librandi, Nov 18 2015
-
H := n -> simplify(1/hypergeom([-3*n,3*n+3,1],[3/2,2],3/4)); A060544 := n -> H(n-1); seq(A060544(i),i=1..19); # Peter Luschny, Jan 09 2012
-
Take[Accumulate[Range[150]], {1, -1, 3}] (* Harvey P. Dale, Mar 11 2013 *)
LinearRecurrence[{3, -3, 1}, {1, 10, 28}, 50] (* Harvey P. Dale, Mar 11 2013 *)
FoldList[#1 + #2 &, 1, 9 Range @ 50] (* Robert G. Wilson v, Feb 02 2011 *)
Table[(3 n - 1) (3 n - 2)/2, {n, 20}] (* Eric W. Weisstein, Jul 15 2021 *)
Table[Binomial[3 n - 1, 2], {n, 20}] (* Eric W. Weisstein, Jul 15 2021 *)
Table[PolygonalNumber[3 n - 2], {n, 20}] (* Eric W. Weisstein, Jul 15 2021 *)
-
a(n)=(3*n-1)*(3*n-2)/2
-
[(3*n-1)*(3*n-2)/2 for n in (1..50)] # G. C. Greubel, Mar 02 2019
Formulas by Paul Berry corrected for offset 1 by
Wolfdieter Lang, Jan 30 2015
A053135
Binomial coefficients C(2*n+6,6).
Original entry on oeis.org
1, 28, 210, 924, 3003, 8008, 18564, 38760, 74613, 134596, 230230, 376740, 593775, 906192, 1344904, 1947792, 2760681, 3838380, 5245786, 7059052, 9366819, 12271512, 15890700, 20358520, 25827165, 32468436, 40475358, 50063860, 61474519, 74974368, 90858768
Offset: 0
- Nathaniel Johnston, Table of n, a(n) for n = 0..1000
- Milan Janjić, Enumerative Formulas for Some Functions on Finite Sets.
- Milan Janjić, Two Enumerative Functions.
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
-
[Binomial(2*n+6, 6): n in [0..30]]; // G. C. Greubel, Sep 03 2018
-
seq(binomial(2*n+6,6),n=0..40); # Nathaniel Johnston, May 14 2011
-
Table[Binomial[2*n+6, 6], {n, 0, 30}] (* G. C. Greubel, Sep 03 2018 *)
-
vector(30,n,n--; binomial(2*n+6, 6)) \\ G. C. Greubel, Sep 03 2018
Showing 1-5 of 5 results.
Comments