A190176 a(n) = n^4 + 2^4 + (n+2)^4.
32, 98, 288, 722, 1568, 3042, 5408, 8978, 14112, 21218, 30752, 43218, 59168, 79202, 103968, 134162, 170528, 213858, 264992, 324818, 394272, 474338, 566048, 670482, 788768, 922082, 1071648, 1238738, 1424672, 1630818, 1858592
Offset: 0
Examples
a(3) = 722 = 3^4 +2^4+(3+2)^4 = 2(3^2+3*2+2^2)^2 = 2*19^2. a(13) = 79202 = 13^4+2^4+(13 + 2)^4 = 2(13^2+13*2+2^2)^2 = 2*199^2.
References
- Robert Carmichael, Diophantine Analysis, Ed. 1915 by Mathematical Monographs, pages 66-67.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..3000
- Rafael Parra Machío, dofanticas.pdf, pages 14-15
- Rafael Parra Machío, Educaciones iofanticas.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Magma
[n^4+2^4+(n+2)^4: n in [0..35]]; // Vincenzo Librandi, Jun 09 2011
-
Mathematica
Table[n^4+2^4+(n+2)^4,{n,0,20}] CoefficientList[Series[(32 - 62*x + 118*x^2 - 58*x^3 + 18*x^4)/(1-x)^5, {x,0,50}], x] (* G. C. Greubel, Dec 28 2017 *) LinearRecurrence[{5,-10,10,-5,1},{32,98,288,722,1568},50] (* Harvey P. Dale, May 26 2023 *)
-
PARI
a(n)=2*(n^2+2*n+4)^2 \\ Charles R Greathouse IV, Jun 08 2011
-
PARI
x='x+O('x^30); Vec((32 - 62*x + 118*x^2 - 58*x^3 + 18*x^4)/(1-x)^5 ) \\ G. C. Greubel, Dec 28 2017
Formula
G.f.: (32 - 62*x + 118*x^2 - 58*x^3 + 18*x^4)/(1-x)^5.
Comments