cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190176 a(n) = n^4 + 2^4 + (n+2)^4.

Original entry on oeis.org

32, 98, 288, 722, 1568, 3042, 5408, 8978, 14112, 21218, 30752, 43218, 59168, 79202, 103968, 134162, 170528, 213858, 264992, 324818, 394272, 474338, 566048, 670482, 788768, 922082, 1071648, 1238738, 1424672, 1630818, 1858592
Offset: 0

Views

Author

Rafael Parra Machio, May 19 2011

Keywords

Comments

Each term equals the sum of three fourth powers and also twice a perfect square: n^4 + 2^4 + (n+2)^4 = 2*(n^2 + 2*n + 2^2)^2.
More generally, n^4 + k^4 + (n+k)^4 = 2*(n^2 + n*k + k^2)^2; in this case, k=2.

Examples

			a(3) = 722 = 3^4 +2^4+(3+2)^4 = 2(3^2+3*2+2^2)^2 = 2*19^2.
a(13) = 79202 = 13^4+2^4+(13 + 2)^4 = 2(13^2+13*2+2^2)^2 = 2*199^2.
		

References

  • Robert Carmichael, Diophantine Analysis, Ed. 1915 by Mathematical Monographs, pages 66-67.

Programs

  • Magma
    [n^4+2^4+(n+2)^4: n in [0..35]]; // Vincenzo Librandi, Jun 09 2011
    
  • Mathematica
    Table[n^4+2^4+(n+2)^4,{n,0,20}]
    CoefficientList[Series[(32 - 62*x + 118*x^2 - 58*x^3 + 18*x^4)/(1-x)^5, {x,0,50}], x] (* G. C. Greubel, Dec 28 2017 *)
    LinearRecurrence[{5,-10,10,-5,1},{32,98,288,722,1568},50] (* Harvey P. Dale, May 26 2023 *)
  • PARI
    a(n)=2*(n^2+2*n+4)^2 \\ Charles R Greathouse IV, Jun 08 2011
    
  • PARI
    x='x+O('x^30); Vec((32 - 62*x + 118*x^2 - 58*x^3 + 18*x^4)/(1-x)^5 ) \\ G. C. Greubel, Dec 28 2017

Formula

G.f.: (32 - 62*x + 118*x^2 - 58*x^3 + 18*x^4)/(1-x)^5.