cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A190440 [(bn+c)r]-b[nr]-[cr], where (r,b,c)=(golden ratio,4,0) and []=floor.

Original entry on oeis.org

2, 0, 3, 1, 0, 2, 1, 3, 2, 0, 3, 1, 0, 2, 1, 3, 2, 0, 2, 1, 3, 2, 0, 3, 1, 0, 2, 1, 3, 2, 0, 3, 1, 0, 2, 0, 3, 1, 0, 2, 1, 3, 2, 0, 3, 1, 0, 2, 1, 3, 2, 0, 3, 1, 3, 2, 0, 3, 1, 0, 2, 1, 3, 2, 0, 3, 1, 0, 2, 1, 3, 1, 0, 2, 1, 3, 2, 0, 3, 1, 0, 2, 1, 3, 2, 0, 3, 1, 0, 2, 0, 3, 1, 0, 2, 1, 3, 2, 0, 3, 1, 0, 2, 1, 3, 2, 0, 2, 1, 3, 2, 0
Offset: 1

Views

Author

Clark Kimberling, May 10 2011

Keywords

Comments

Write a(n)=[(bn+c)r]-b[nr]-[cr]. If r>0 and b and c are integers satisfying b>=2 and 0<=c<=b-1, then 0<=a(n)<=b. The positions of 0 in the sequence a are of interest, as are the position sequences for 1,2,...,b. These b+1 position sequences comprise a partition of the positive integers.
Examples:
(golden ratio,2,0): A078588, A005653, A005652
(golden ratio,2,1): A190427-A190430
(golden ratio,3,0): A140397-A190400
(golden ratio,3,1): A140431-A190435
(golden ratio,3,2): A140436-A190439

Crossrefs

Programs

  • Mathematica
    r = GoldenRatio;
    f[n_] := Floor[4*n*r] - 4*Floor[n*r];
    t = Table[f[n], {n, 1, 320}] (* A190440 *)
    Flatten[Position[t, 0]]  (* A190240 *)
    Flatten[Position[t, 1]]  (* A190249 *)
    Flatten[Position[t, 2]]  (* A190442 *)
    Flatten[Position[t, 3]]  (* A190443 *)
    Flatten[Position[t, 4]]  (* A190248 *)

Formula

a(n)=[4nr]-4[nr], where r=golden ratio.

A190249 Positions of 0 in A190248.

Original entry on oeis.org

2, 5, 10, 13, 18, 23, 26, 31, 34, 36, 39, 44, 47, 52, 57, 60, 65, 68, 73, 78, 81, 86, 89, 91, 94, 99, 102, 107, 112, 115, 120, 123, 128, 133, 136, 141, 146, 149, 154, 157, 162, 167, 170, 175, 178, 180, 183, 188, 191, 196, 201, 204, 209, 212, 217, 222, 225, 230, 233, 235, 238, 243, 246, 251, 256, 259, 264, 267, 272, 277, 280, 285, 290
Offset: 1

Views

Author

Clark Kimberling, May 06 2011

Keywords

Crossrefs

Programs

  • Mathematica
    u = GoldenRatio; v = u^2; w=u^3;
    f[n_] := Floor[n*u + n*v + n*w] - Floor[n*u] - Floor[n*v] - Floor[n*w]
    t = Table[f[n], {n, 1, 120}] (* A190248 *)
    Flatten[Position[t, 0]]      (* A190249 *)
    Flatten[Position[t, 1]]      (* A190250 *)
    Flatten[Position[t, 2]]      (* A190251 *)

A190248 a(n) = [nu+nv+nw]-[nu]-[nv]-[nw], where u=(1+sqrt(5))/2, v=u^2, w=u^3, []=floor.

Original entry on oeis.org

1, 0, 2, 1, 0, 1, 1, 2, 1, 0, 2, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 1, 0, 2, 1, 0, 1, 1, 2, 1, 0, 2, 1, 0, 1, 0, 2, 1, 0, 1, 1, 2, 1, 0, 2, 1, 0, 1, 1, 2, 1, 0, 2, 1, 2, 1, 0, 2, 1, 0, 1, 1, 2, 1, 0, 2, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 1, 0, 2, 1, 0, 1, 1, 2, 1, 0, 2, 1, 0, 1, 0, 2, 1, 0, 1, 1, 2, 1, 0, 2, 1, 0, 1, 1, 2, 1, 0, 1
Offset: 1

Views

Author

Clark Kimberling, May 06 2011

Keywords

Comments

a(n) = A190440(n) - A078588(n). This follows from substituting w = 1+2u, v = 1+u, and taking 2n, n and n out of the floor functions. - Michel Dekking, Oct 21 2016

Crossrefs

Programs

  • Magma
    [Floor(2*n*(2+Sqrt(5))) - Floor(n*(1+Sqrt(5))/2) - Floor(n*(3 + Sqrt(5))/2): n in [1..30]]; // G. C. Greubel, Dec 26 2017
  • Mathematica
    u = GoldenRatio; v = u^2; w=u^3;
    f[n_] := Floor[n*u + n*v + n*w] - Floor[n*u] - Floor[n*v] - Floor[n*w]
    t = Table[f[n], {n, 1, 120}] (* A190248 *)
    Flatten[Position[t, 0]]      (* A190249 *)
    Flatten[Position[t, 1]]      (* A190250 *)
    Flatten[Position[t, 2]]      (* A190251 *)
  • PARI
    for(n=1,30, print1(floor(2*n*(2+sqrt(5))) - floor(n*(1+sqrt(5))/2) - floor(n*(3 + sqrt(5))/2) - floor(n*(2 + sqrt(5))), ", ")) \\ G. C. Greubel, Dec 26 2017
    

Formula

a(n) = [2n+4nu]-[nu]-[n+nu]-[n+2nu], where u=(1+sqrt(5))/2. - Michel Dekking, Oct 21 2016

Extensions

Name corrected by Michel Dekking, Oct 21 2016

A190250 Positions of 1 in A190248.

Original entry on oeis.org

1, 4, 6, 7, 9, 12, 14, 15, 17, 19, 20, 22, 25, 27, 28, 30, 33, 35, 38, 40, 41, 43, 46, 48, 49, 51, 54, 56, 59, 61, 62, 64, 67, 69, 70, 72, 74, 75, 77, 80, 82, 83, 85, 88, 90, 93, 95, 96, 98, 101, 103, 104, 106, 108, 109, 111, 114, 116, 117, 119, 122, 124, 125, 127, 129, 130, 132, 135, 137, 138, 140, 143, 145, 148, 150, 151, 153, 156, 158, 159, 161
Offset: 1

Views

Author

Clark Kimberling, May 06 2011

Keywords

Comments

Numbers n such that 1/4 < {n*phi} < 3/4, where phi is the golden ratio (1+sqrt(5))/2 and { } denotes fractional part. - Burghard Herrmann, Nov 14 2017

Crossrefs

Programs

  • Mathematica
    u = GoldenRatio; v = u^2; w=u^3;
    f[n_] := Floor[n*u + n*v + n*w] - Floor[n*u] - Floor[n*v] - Floor[n*w]
    t = Table[f[n], {n, 1, 120}] (* A190248 *)
    Flatten[Position[t, 0]]      (* A190249 *)
    Flatten[Position[t, 1]]      (* A190250 *)
    Flatten[Position[t, 2]]      (* A190251 *)
  • PARI
    isok(n) = my(u=(1+sqrt(5))/2); floor(2*n+4*n*u)-floor(n*u)-floor(n+n*u)-floor(n+2*n*u) == 1; \\ Michel Marcus, Nov 14 2017

A295085 Numbers k such that {k*phi} < 0.25 or {k*phi} > 0.75, where phi is the golden ratio (1 + sqrt(5))/2 and { } denotes fractional part.

Original entry on oeis.org

2, 3, 5, 8, 10, 11, 13, 16, 18, 21, 23, 24, 26, 29, 31, 32, 34, 36, 37, 39, 42, 44, 45, 47, 50, 52, 53, 55, 57, 58, 60, 63, 65, 66, 68, 71, 73, 76, 78, 79, 81, 84, 86, 87, 89, 91, 92, 94, 97, 99, 100, 102, 105, 107, 110, 112, 113, 115, 118, 120, 121, 123, 126, 128, 131, 133, 134, 136, 139, 141, 142, 144, 146
Offset: 0

Views

Author

Burghard Herrmann, Nov 14 2017

Keywords

Comments

Numbers k such that k rotations by the golden angle yields a result between -Pi/2 and Pi/2 radians.

Crossrefs

Complement of A190250 (as has been proved), thus, intertwining of A190249 and A190251.
Cf. A001622.

Programs

  • Mathematica
    Select[Range@ 150, Or[# < 1/4, # > 3/4] &@ FractionalPart[# GoldenRatio] &] (* Michael De Vlieger, Nov 15 2017 *)
  • PARI
    isok(n) = my(phi=(1+sqrt(5))/2); (frac(n*phi)<1/4) || (frac(n*phi)>3/4); \\ Michel Marcus, Nov 14 2017
  • R
    Phi=(sqrt(5)+1)/2 # Golden ratio
    fp=function(x) x-floor(x) # fractional part
    M=200
    alpha=fp((1:M)*Phi) # angles in turn
    PF=c(); PB=c() # Phyllotaxis front and back
    for (i in 1:M) if ((alpha[i]>0.25)*(alpha[i]<0.75)) PB=c(PB,i) else PF=c(PF,i)
    
Showing 1-5 of 5 results.