A190339 The denominators of the subdiagonal in the difference table of the Bernoulli numbers.
2, 6, 15, 105, 105, 231, 15015, 2145, 36465, 969969, 4849845, 10140585, 10140585, 22287, 3231615, 7713865005, 7713865005, 90751353, 218257003965, 1641030105, 67282234305, 368217318651, 1841086593255
Offset: 0
Examples
The first few rows of the T(n, m) array (difference table of the Bernoulli numbers) are: 1, 1/2, 1/6, 0, -1/30, 0, 1/42, -1/2, -1/3, -1/6, -1/30, 1/30, 1/42, -1/42, 1/6, 1/6, 2/15, 1/15, -1/105, -1/21, -1/105, 0, -1/30, -1/15, -8/105, -4/105, 4/105, 8/105, -1/30, -1/30, -1/105, 4/105, 8/105, 4/105, -116/1155, 0, 1/42, 1/21, 4/105, -4/105, -32/231, -16/231, 1/42, 1/42, -1/105, -8/105, -116/1155, 16/231, 6112/15015,
References
- Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..450
- Kwang-Wu Chen, A summation on Bernoulli numbers, Journal of Number Theory, Volume 111, Issue 2, April 2005, Pages 372-391.
- Peter Luschny, Computation and asymptotics of the Bernoulli numbers
Programs
-
Maple
T := proc(n,m) option remember; if n < 0 or m < 0 then 0 ; elif n = 0 then if m = 1 then -bernoulli(m) ; else bernoulli(m) ; end if; else procname(n-1,m+1)-procname(n-1,m) ; end if; end proc: A190339 := proc(n) denom( T(n+1,n)) ; end proc: # R. J. Mathar, Apr 25 2013
-
Mathematica
nmax = 23; b[n_] := BernoulliB[n]; b[1]=1/2; bb = Table[b[n], {n, 0, 2*nmax-1}]; diff = Table[Differences[bb, n], {n, 1, nmax}]; Diagonal[diff] // Denominator (* Jean-François Alcover, Aug 08 2012 *)
-
Sage
def A190339_list(n) : T = matrix(QQ, 2*n+1) for m in (0..2*n) : T[0,m] = bernoulli_polynomial(1,m) for k in range(m-1,-1,-1) : T[m-k,k] = T[m-k-1,k+1] - T[m-k-1,k] for m in (0..n-1) : print([T[m,k] for k in (0..n-1)]) return [denominator(T[k,k+1]) for k in (0..n-1)] A190339_list(7) # Also prints the table as displayed in EXAMPLE. Peter Luschny, Jun 21 2012
Formula
T(n, n) = 2*T(n, n+1).
Extensions
Edited and Maple program added by Johannes W. Meijer, Jun 29 2011, Jun 30 2011
New name from Peter Luschny, Jun 21 2012
Comments