cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A190646 Least number k such that d(k-1) = d(k+1) = 2n or 0 if no such k exists, where d(n)=A000005(n).

Original entry on oeis.org

4, 7, 19, 41, 127252, 199, 26890624, 919, 17299, 6641, 25269208984376, 3401, 3900566650390624, 640063, 8418574, 18089, 1164385682220458984374, 41651, 69528379848480224609374, 128465, 34084859374, 12164095, 150509919493198394775390626, 90271
Offset: 1

Views

Author

Juri-Stepan Gerasimov, May 15 2011, May 20 2011

Keywords

Comments

a(28) = 2319679. a(30) = 3568049.
From Chai Wah Wu, Mar 13 2019: (Start)
a(26) = 64505245697, a(27) = 3959299, a(29) = 237828698392557762563228607177734374, a(31) = 26711406049549496732652187347412109374, a(32) = 441559, a(34) = 12535291248641, a(36) = 352351, a(37) = 1749348542212388688829378224909305572509765626, a(38) = 193405731995647.
Conjecture: if p is an odd prime, then a(p) is even.
(End)

Examples

			a(16)=18089 because d(18088)=d(18090)=2*16.
		

Crossrefs

Extensions

a(7), a(11), a(13), and a(15) from T. D. Noe, May 25 2011
a(17), a(19), a(21)-a(23) from Chai Wah Wu, Mar 13 2019
b-file extending to a(40) from Hugo van der Sanden, Mar 04 2022

A190645 Numbers n such that d(n-2) = d(n) = d(n+2) = 12 where d(n)=A000005(n).

Original entry on oeis.org

350, 738, 1276, 1314, 2890, 5052, 6356, 9052, 9054, 9950, 14050, 15966, 16852, 17916, 17948, 19166, 19852, 22475, 23348, 23420, 24350, 25182, 25184, 25186, 30476, 32418, 41058, 41060, 47646, 47648, 54927, 56452, 57436, 59924, 61794, 61796, 66787, 68348
Offset: 1

Views

Author

Juri-Stepan Gerasimov, May 15 2011

Keywords

Comments

Numbers of the form A190355(n)+1 such that A190355(n)=A190355(n+1)-2.

Crossrefs

Cf. A000005(number of divisors of n), A190355.

Programs

  • Mathematica
    f[n_] := DivisorSigma[0,n]; lst = {}; n = 2; While[Length[lst] < 40, n++; If[f[n-2] == f[n] == f[n+2] == 12, AppendTo[lst, n]]]; lst (* T. D. Noe, May 26 2011 *)
    Select[Range[2, 5000], DivisorSigma[0, # - 2] == 12 && DivisorSigma[0, #] == 12 && DivisorSigma[0, # + 2] == 12 &] (* G. C. Greubel, Dec 29 2017 *)
  • PARI
    isok(n) = (n>2) && (numdiv(n-2)==12) && (numdiv(n)==12) && (numdiv(n+2)==12); \\ Michel Marcus, Dec 30 2017

Extensions

Corrected and extended by T. D. Noe, May 26 2011
Showing 1-2 of 2 results.