A035513 Wythoff array read by falling antidiagonals.
1, 2, 4, 3, 7, 6, 5, 11, 10, 9, 8, 18, 16, 15, 12, 13, 29, 26, 24, 20, 14, 21, 47, 42, 39, 32, 23, 17, 34, 76, 68, 63, 52, 37, 28, 19, 55, 123, 110, 102, 84, 60, 45, 31, 22, 89, 199, 178, 165, 136, 97, 73, 50, 36, 25, 144, 322, 288, 267, 220, 157, 118, 81, 58, 41, 27, 233, 521
Offset: 1
A190435 Positions of 3 in A190431.
3, 8, 11, 16, 21, 24, 29, 37, 42, 45, 50, 55, 58, 63, 71, 76, 79, 84, 92, 97, 100, 105, 110, 113, 118, 126, 131, 134, 139, 144, 147, 152, 155, 160, 165, 168, 173, 181, 186, 189, 194, 199, 202, 207, 215, 220, 223, 228, 236, 241, 244, 249, 254, 257, 262, 270, 275, 278, 283, 288, 291, 296, 304, 309, 312, 317, 325, 330, 333, 338, 343
Offset: 1
Keywords
Comments
See A190431.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A190431.
Programs
A190434 Positions of 2 in A190431.
1, 4, 6, 9, 14, 17, 19, 22, 27, 30, 32, 35, 38, 40, 43, 48, 51, 53, 56, 59, 61, 64, 66, 69, 72, 74, 77, 82, 85, 87, 90, 93, 95, 98, 103, 106, 108, 111, 116, 119, 121, 124, 127, 129, 132, 137, 140, 142, 145, 148, 150, 153, 158, 161, 163, 166, 171, 174, 176, 179, 182, 184, 187, 192, 195, 197, 200, 203, 205, 208, 210
Offset: 1
Keywords
Comments
See A190431.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A190431.
Programs
A190431 a(n) = [(b*n+c)*r] - b*[n*r] - [c*r], where (r,b,c)=(golden ratio,3,1) and []=floor.
2, 1, 3, 2, 0, 2, 1, 3, 2, 1, 3, 1, 0, 2, 1, 3, 2, 0, 2, 1, 3, 2, 1, 3, 1, 0, 2, 1, 3, 2, 1, 2, 1, 0, 2, 1, 3, 2, 0, 2, 1, 3, 2, 1, 3, 1, 0, 2, 1, 3, 2, 1, 2, 1, 3, 2, 1, 3, 2, 0, 2, 1, 3, 2, 1, 2, 1, 0, 2, 1, 3, 2, 0, 2, 1, 3, 2, 1, 3, 1, 0, 2, 1, 3, 2, 1, 2, 1, 0, 2, 1, 3, 2, 0, 2, 1, 3, 2, 1, 3, 1, 0, 2, 1, 3, 2, 1, 2, 1, 3, 2, 1, 3, 1, 0, 2, 1, 3, 2, 1, 2, 1, 0, 2, 1, 3, 2, 0, 2, 1, 3, 2, 1, 3, 1, 0
Offset: 1
Keywords
Comments
Write a(n) = [(b*n+c)*r] - b*[n*r] - [c*r]. If r>0 and b and c are integers satisfying b>=2 and 0<=c<=b-1, then 0<=a(n)<=b. The positions of 0 in the sequence a are of interest, as are the position sequences for 1,2,...,b. These b+1 position sequences comprise a partition of the positive integers.
Examples:
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[Floor((3*n+1)*(1+Sqrt(5))/2) - 3*Floor(n*(1+Sqrt(5))/2) - 1: n in [1..100]]; // G. C. Greubel, Apr 06 2018
-
Mathematica
r = GoldenRatio; b = 3; c = 1; f[n_] := Floor[(b*n + c)*r] - b*Floor[n*r] - Floor[c*r]; t = Table[f[n], {n, 1, 320}] (* A190431 *) Flatten[Position[t, 0]] (* A190432 *) Flatten[Position[t, 1]] (* A190433 *) Flatten[Position[t, 2]] (* A190434 *) Flatten[Position[t, 3]] (* A190435 *)
-
PARI
for(n=1,100, print1(floor((3*n+1)*(1+sqrt(5))/2) - 3*floor(n*(1+sqrt(5))/2) - 1, ", ")) \\ G. C. Greubel, Apr 06 2018
Formula
a(n) = floor((3*n+1)*(1+sqrt(5))/2) - 3*floor(n*(1+sqrt(5))/2) - 1. - G. C. Greubel, Apr 06 2018
A190432 Positions of 0 in A190431.
5, 13, 18, 26, 34, 39, 47, 60, 68, 73, 81, 89, 94, 102, 115, 123, 128, 136, 149, 157, 162, 170, 178, 183, 191, 204, 212, 217, 225, 233, 238, 246, 251, 259, 267, 272, 280, 293, 301, 306, 314, 322, 327, 335, 348, 356, 361, 369, 382, 390, 395, 403, 411, 416, 424, 437, 445, 450, 458, 466, 471, 479, 492, 500, 505, 513
Offset: 1
Keywords
Comments
See A190431.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A190431.
Comments
Examples
References
Links
Crossrefs
Programs
Maple
Mathematica
PARI
Python
Python
Formula
Extensions