cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190577 a(n) = n*(n+2)*(n+4)*(n+6).

Original entry on oeis.org

105, 384, 945, 1920, 3465, 5760, 9009, 13440, 19305, 26880, 36465, 48384, 62985, 80640, 101745, 126720, 156009, 190080, 229425, 274560, 326025, 384384, 450225, 524160, 606825, 698880, 801009, 913920, 1038345, 1175040, 1324785
Offset: 1

Views

Author

Rafael Parra Machio, May 18 2011

Keywords

Comments

Each term is the difference between a square and a fourth power:
n*(n+2)*(n+4)*(n+6) = ((n+2)*(n+4)-2^2)^2-2^4. More generally,
n*(n+k)*(n+2*k)*(n+3*k) = ((n+k)*(n+2*k)-k^2)^2-k^4 for any k; in this case, k=2.

Examples

			a(3) = 945 = 3*(3+2)*(3+4)*(3+6) = ((3+2)*(3+2*2)-2^2)^2-2^4 = 31^2-2^4.
a(13) = 62985 = 13*(13+2)*(13+4)*(13+6) = ((13+2)*(13+2*2)+2^2)^2-2^4 = 251^2-2^4.
		

References

  • Miguel de Guzmán Ozámiz, Para Pensar Mejor, Editions Pyramid, 2001, p. 294-295.

Programs

  • Magma
    [((n+2)*(n+4)-2^2)^2-2^4: n in [1..40]]; // Vincenzo Librandi, May 23 2011
    
  • Mathematica
    Table[n (n + 2) (n + 4) (n + 6), {n, 1, 15}]
    Table[((n + 2) (n + 4) - 2^2)^2 - 2^4, {n, 1, 15}]
    LinearRecurrence[{5,-10,10,-5,1},{105,384,945,1920,3465},40] (* Harvey P. Dale, Nov 28 2024 *)
  • Python
    def A190577(n): return n*(n*(n*(n + 12) + 44) + 48) # Chai Wah Wu, Mar 06 2024

Formula

a(n) = ((n+2)*(n+4)-2^2)^2-2^4.
G.f.: 3*x*(5*x^3-25*x^2+47*x-35)/(x-1)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Wesley Ivan Hurt, May 15 2023
From Amiram Eldar, Oct 03 2024: (Start)
Sum_{n>=1} 1/a(n) = 7/480.
Sum_{n>=1} (-1)^(n+1)/a(n) = 11/1440. (End)