cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A086711 Primes p such that A001414(p-1) = A001414(p+1), where A001414 = sum of primes dividing n (with repetition).

Original entry on oeis.org

11, 17, 31, 251, 1429, 3041, 16561, 16927, 53299, 56897, 89783, 95089, 213599, 282977, 345547, 432587, 592223, 763457, 906949, 915799, 1050449, 1058389, 1485017, 1577341, 1678399, 1780253, 1855549, 2131687, 2374289, 2658259
Offset: 1

Views

Author

Jason Earls, Jul 28 2003

Keywords

Comments

Conjecture: sequence is infinite.

Examples

			a(3)=31 because it is prime and 30=2*3*5, 32=2^5 and 2+3+5 = 2+2+2+2+2 = 10.
		

Crossrefs

A190722 Primes p such that A008472(p-1) = A008472(p+1) and is a prime.

Original entry on oeis.org

3, 45751, 149351, 171529, 223099, 434237, 678077, 706841, 1996297, 3993037, 6340457, 7199113, 7419761, 9000317, 13129271, 15052777, 17193217, 18436879, 18749881, 18998519, 23353469, 23689423, 33746663, 40985411, 41437751, 43547797, 51198097, 53773651, 56825687, 60207809, 62190113, 79778899, 81708353, 83019421
Offset: 1

Views

Author

Robert G. Wilson v, May 17 2011

Keywords

Comments

A008472 is the sum of the distinct primes dividing n.

Examples

			For p = 45751, p-1 = 2*3*5^3*61; 2+3+5+61=71 and p+1 = 2^3*7*19*43; 2+7+19+43 = 71.
		

Crossrefs

Subsequence of A203182.

Programs

  • Magma
    [p:p in PrimesInInterval(3,10^8)|(&+PrimeDivisors(p-1) eq &+PrimeDivisors(p+1)) and IsPrime(&+PrimeDivisors(p-1))]; // Marius A. Burtea, Nov 14 2019
  • Mathematica
    fQ[n_] := Block[{pn = Plus @@ (First@# & /@ FactorInteger[n - 1]), pp = Plus@@ (First@# & /@ FactorInteger[n + 1])}, pn == pp && PrimeQ[pn]];
    p = 2; lst = {}; While[p < 10^8, If[fQ@p, AppendTo[lst, p]; Print@p]; p =
    NextPrime@p]; lst
    pQ[n_]:=Module[{p1=Total[FactorInteger[n-1][[All,1]]],p2=Total[ FactorInteger[ n+1][[All,1]]]},p1==p2&&PrimeQ[p1]]; Select[ Prime[ Range[5*10^6]],pQ] (* Harvey P. Dale, Jun 18 2017 *)

A203182 Primes p such that A008472(p-1) = A008472(p+1), where A008472 = sum of distinct primes dividing n.

Original entry on oeis.org

3, 18913, 24733, 29633, 32429, 42719, 45751, 46103, 61409, 117991, 149351, 171529, 174019, 176017, 223099, 294893, 326369, 363691, 421727, 423503, 434237, 472631, 658579, 678077, 686423, 706841, 735901, 770059, 771629, 906949, 936827, 937571, 1073447, 1256029
Offset: 1

Views

Author

Michel Lagneau, Dec 30 2011

Keywords

Comments

Conjecture: the sequence is infinite.

Examples

			18913 is in the sequence because:
sum of the distinct prime divisors of 18912 = 2+3+197 = 202;
sum of the distinct prime divisors of 18914 = 2+7+193 = 202.
		

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 1 to 100000 do:p:=ithprime(n):p1:=p-1: p2:=p+1:t1:=ifactors(p1)[2]; t11 := sum(t1[i][1], i=1..nops(t1)):t2:=ifactors(p2)[2]; t22 := sum(t2[i][1], i=1..nops(t2)):if t11=t22 then printf(`%d, `,p):else fi:od:
  • Mathematica
    Select[Prime[Range[100000]],Total[Transpose[FactorInteger[#-1]][[1]]] == Total[Transpose[FactorInteger[#+1]][[1]]]&] (* Harvey P. Dale, Sep 22 2013 *)
Showing 1-3 of 3 results.