cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190719 Numbers that are congruent to {0, 1, 3, 5, 7, 8, 11} mod 12.

Original entry on oeis.org

0, 1, 3, 5, 7, 8, 11, 12, 13, 15, 17, 19, 20, 23, 24, 25, 27, 29, 31, 32, 35, 36, 37, 39, 41, 43, 44, 47, 48, 49, 51, 53, 55, 56, 59, 60, 61, 63, 65, 67, 68, 71, 72, 73, 75, 77, 79, 80, 83, 84, 85, 87, 89, 91, 92, 95, 96, 97, 99, 101, 103, 104, 107, 108, 109, 111
Offset: 1

Views

Author

Roberto Bertocco, May 29 2011

Keywords

Comments

The key-numbers of the pitches of a minor neapolitan scale on a standard chromatic keyboard, with root = 0.
This sequence contains all odd primes. - Jonathan Vos Post, Jun 09 2011

Crossrefs

Cf. A190785.

Programs

  • Magma
    [n : n in [0..150] | n mod 12 in [0, 1, 3, 5, 7, 8, 11]]; // Wesley Ivan Hurt, Jul 21 2016
  • Maple
    A190719:=n->12*floor(n/7)+[0, 1, 3, 5, 7, 8, 11][(n mod 7)+1]: seq(A190719(n), n=0..100); # Wesley Ivan Hurt, Jul 21 2016
  • Mathematica
    Select[Range[0,120], MemberQ[{0,1,3,5,7,8,11}, Mod[#,12]]&] (* Harvey P. Dale, Jun 10 2011 *)

Formula

a(n) = a(n-1) + a(n-7) - a(n-8) for n>8.
G.f.: x^2*(1+2*x+2*x^2+2*x^3+x^4+3*x^5+x^6) / ( (x^6+x^5+x^4+x^3+x^2+x+1)*(x-1)^2 ). - R. J. Mathar, Jun 11 2011
a(n) = floor(12*n/7) - floor((n mod 7)/6) - floor(((n+3) mod 7)/5). - Rolf Pleisch, Jun 12 2011
From Wesley Ivan Hurt, Jul 21 2016: (Start)
a(n) = a(n-7) + 12 for n>7.
a(n) = (84*n - 91 - 9*(n mod 7) + 5*((n+1) mod 7) - 2*((n+2) mod 7) - 2*((n+3) mod 7) - 2*((n+4) mod 7) + 5*((n+5) mod 7) + 5*((n+6) mod 7))/49.
a(7k) = 12k-1, a(7k-1) = 12k-4, a(7k-2) = 12k-5, a(7k-3) = 12k-7, a(7k-4) = 12k-9, a(7k-5) = 12k-11, a(7k-6) = 12k-12. (End)