cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190816 a(n) = 5*n^2 - 4*n + 1.

Original entry on oeis.org

1, 2, 13, 34, 65, 106, 157, 218, 289, 370, 461, 562, 673, 794, 925, 1066, 1217, 1378, 1549, 1730, 1921, 2122, 2333, 2554, 2785, 3026, 3277, 3538, 3809, 4090, 4381, 4682, 4993, 5314, 5645, 5986, 6337, 6698, 7069, 7450, 7841, 8242, 8653, 9074
Offset: 0

Views

Author

Keywords

Comments

For n >= 2, hypotenuses of primitive Pythagorean triangles with m = 2*n-1, where the sides of the triangle are a = m^2 - n^2, b = 2*n*m, c = m^2 + n^2; this sequence is the c values, short sides (a) are A045944(n-1), and long sides (b) are A002939(n).

Crossrefs

Short sides (a) A045944(n-1), long sides (b) A002939(n).
Cf. A017281 (first differences), A051624 (a(n)-1), A202141.
Sequences of the form m*n^2 - 4*n + 1: -A131098 (m=0), A028872 (m=1), A056220 (m=2), A045944 (m=3), A016754 (m=4), this sequence (m=5), A126587 (m=6), A339623 (m=7), A080856 (m=8).

Programs

  • Magma
    [5*n^2 - 4*n + 1: n in [0..50]]; // Vincenzo Librandi, Jun 19 2011
    
  • Mathematica
    Table[5*n^2 - 4*n + 1, {n, 0, 100}]
    LinearRecurrence[{3,-3,1},{1,2,13},100] (* or *) CoefficientList[ Series[ (-10 x^2+x-1)/(x-1)^3,{x,0,100}],x] (* Harvey P. Dale, May 24 2011 *)
  • PARI
    a(n)=5*n^2-4*n+1 \\ Charles R Greathouse IV, Oct 16 2015
    
  • SageMath
    [5*n^2-4*n+1 for n in range(41)] # G. C. Greubel, Dec 03 2023

Formula

From Harvey P. Dale, May 24 2011: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=1, a(1)=2, a(2)=13.
G.f.: (1 - x + 10*x^2)/(1-x)^3. (End)
E.g.f.: (1 + x + 5*x^2)*exp(x). - G. C. Greubel, Dec 03 2023

Extensions

Edited by Franklin T. Adams-Watters, May 20 2011