cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190817 Initial primes of 6 consecutive primes with consecutive gaps 2,4,6,8,10.

Original entry on oeis.org

13901, 21557, 28277, 55661, 68897, 128981, 221717, 354371, 548831, 665111, 954257, 1164587, 1246367, 1265081, 1538081, 1595051, 1634441, 2200811, 2798921, 2858621, 3053747, 3407081, 3414011, 3967487, 3992201, 4480241, 4608281, 4701731, 4809251, 5029457
Offset: 1

Views

Author

Zak Seidov, May 21 2011

Keywords

Comments

a(1) = 13901 = A190814(5) = A187058(7) = A078847(24).
a(n) + 30 is the greatest term in the sequence of 6 consecutive primes with consecutive gaps 2, 4, 6, 8, 10. - Muniru A Asiru, Aug 10 2017

Examples

			For n = 1, 13901 is in the sequence because 13901, 13903, 13907, 13913, 13921, 13931 are consecutive primes and for n = 2, 21557 is in the sequence since 21557, 21559, 21563, 21569, 21577, 21587 are consecutive primes. - _Muniru A Asiru_, Aug 24 2017
		

Crossrefs

Programs

  • GAP
    K:=3*10^7+1;; # to get all terms <= K.
    P:=Filtered([1,3..K],IsPrime);; I:=[2,4,6,8,10];;
    P1:=List([1..Length(P)-1],i->P[i+1]-P[i]);;
    P2:=List([1..Length(P)-Length(I)],i->[P1[i],P1[i+1],P1[i+2],P1[i+3],P1[i+4]]);;
    P3:=List(Positions(P2,I),i->P[i]);  # Muniru A Asiru, Aug 24 2017
  • Maple
    N:=10^7: # to get all terms <= N.
    Primes:=select(isprime,[seq(i,i=3..N+30,2)]):
    Primes[select(t->[Primes[t+1]-Primes[t], Primes[t+2]-Primes[t+1],Primes[t+3]-Primes[t+2], Primes[t+4]-Primes[t+3], Primes[t+5]-Primes[t+4]]=[2,4,6,8,10], [$1..nops(Primes)-5])]; # Muniru A Asiru, Aug 04 2017
  • Mathematica
    d = Differences[Prime[Range[100000]]]; Prime[Flatten[Position[Partition[d, 5, 1], {2, 4, 6, 8, 10}]]] (* T. D. Noe, May 23 2011 *)
    With[{s = Differences@ Prime@ Range[10^6]}, Prime[SequencePosition[s, Range[2, 10, 2]][[All, 1]] ] ] (* Michael De Vlieger, Aug 16 2017 *)
  • PARI
    lista(nn) = forprime(p=13901, nn, if(nextprime(p+1)==p+2 && nextprime(p+3)==p+6 && nextprime(p+7)==p+12 && nextprime(p+13)==p+20 && nextprime(p+21)==p+30, print1(p", "))); \\ Altug Alkan, Aug 16 2017
    

Extensions

Additional cross references from Harvey P. Dale, May 10 2014