A190817 Initial primes of 6 consecutive primes with consecutive gaps 2,4,6,8,10.
13901, 21557, 28277, 55661, 68897, 128981, 221717, 354371, 548831, 665111, 954257, 1164587, 1246367, 1265081, 1538081, 1595051, 1634441, 2200811, 2798921, 2858621, 3053747, 3407081, 3414011, 3967487, 3992201, 4480241, 4608281, 4701731, 4809251, 5029457
Offset: 1
Keywords
Examples
For n = 1, 13901 is in the sequence because 13901, 13903, 13907, 13913, 13921, 13931 are consecutive primes and for n = 2, 21557 is in the sequence since 21557, 21559, 21563, 21569, 21577, 21587 are consecutive primes. - _Muniru A Asiru_, Aug 24 2017
Links
- Zak Seidov, Table of n, a(n) for n = 1..6000
- R. J. Mathar, Table of Prime Gap Constellations
Programs
-
GAP
K:=3*10^7+1;; # to get all terms <= K. P:=Filtered([1,3..K],IsPrime);; I:=[2,4,6,8,10];; P1:=List([1..Length(P)-1],i->P[i+1]-P[i]);; P2:=List([1..Length(P)-Length(I)],i->[P1[i],P1[i+1],P1[i+2],P1[i+3],P1[i+4]]);; P3:=List(Positions(P2,I),i->P[i]); # Muniru A Asiru, Aug 24 2017
-
Maple
N:=10^7: # to get all terms <= N. Primes:=select(isprime,[seq(i,i=3..N+30,2)]): Primes[select(t->[Primes[t+1]-Primes[t], Primes[t+2]-Primes[t+1],Primes[t+3]-Primes[t+2], Primes[t+4]-Primes[t+3], Primes[t+5]-Primes[t+4]]=[2,4,6,8,10], [$1..nops(Primes)-5])]; # Muniru A Asiru, Aug 04 2017
-
Mathematica
d = Differences[Prime[Range[100000]]]; Prime[Flatten[Position[Partition[d, 5, 1], {2, 4, 6, 8, 10}]]] (* T. D. Noe, May 23 2011 *) With[{s = Differences@ Prime@ Range[10^6]}, Prime[SequencePosition[s, Range[2, 10, 2]][[All, 1]] ] ] (* Michael De Vlieger, Aug 16 2017 *)
-
PARI
lista(nn) = forprime(p=13901, nn, if(nextprime(p+1)==p+2 && nextprime(p+3)==p+6 && nextprime(p+7)==p+12 && nextprime(p+13)==p+20 && nextprime(p+21)==p+30, print1(p", "))); \\ Altug Alkan, Aug 16 2017
Extensions
Additional cross references from Harvey P. Dale, May 10 2014
Comments