cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190865 E.g.f. exp(x+x^3/6).

Original entry on oeis.org

1, 1, 1, 2, 5, 11, 31, 106, 337, 1205, 5021, 20186, 86461, 417847, 1992355, 9860306, 53734241, 292816841, 1633818457, 9855157330, 59926837141, 370352343971, 2439935383271, 16283034762842, 109982177787505, 783404343570301, 5668314772422901, 41412522553362026
Offset: 0

Views

Author

Vladimir Kruchinin, May 22 2011

Keywords

Comments

a(n) is the number of set partitions of {1,2,...,n} such that the size of each block divides 3. - Geoffrey Critzer, Sep 23 2011

Examples

			a(0) = 1 because (vacuously) all sizes of the blocks in the unique set partition of {} divide 3.
a(4) = 5 because there are 5 such set partitions of {1,2,3,4}: ({1},{2,3,4}) ({2},{1,3,4}) ({3},{1,2,4}) ({4},{1,2,3}) ({1},{2},{3},{4}).
		

Crossrefs

Cf. A001470.
Column k=3 of A275422.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          `if`(j>n, 0, a(n-j)*binomial(n-1, j-1)), j=[1, 3]))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jul 27 2016
  • Mathematica
    Range[0, 25]! CoefficientList[Series[Exp[x + x^3/6] , {x, 0, 25}], x]
  • Maxima
    a(n):=n!*sum(1/((k)!*(n-3*k)!*6^(k)),k,0,n/3);

Formula

a(n) = n!*sum(k=0..n/3, 1/((k)!*(n-3*k)!*6^(k))), n>0, a(0)=1.
E.g.f.: E(0)/2, where E(k)= 1 + 1/(1 - x*(6+x^2)/(x*(6+x^2)+ 6*(k+1)/E(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 01 2013
Recurrence: 2*a(n) = 2*a(n-1) + (n-2)*(n-1)*a(n-3). - Vaclav Kotesovec, Jun 27 2013
a(n) ~ n^(2*n/3) * exp(-2*n/3+(2*n)^(1/3)) / (sqrt(3)*2^(n/3)) * (1 - 2^(2/3)/(6*n^(1/3)) + 13*2^(1/3)/(36*n^(2/3))). - Vaclav Kotesovec, Jun 27 2013
a(n) = hypergeom([-n/3, (1 - n)/3, (2 - n)/3], [], -9/2). - Peter Luschny, Jun 04 2021