A190882 Numbers other than prime powers divisible by the sum of the squares of their prime divisors.
46206, 72105, 73346, 92412, 96096, 97440, 98098, 99528, 113883, 117040, 127680, 134805, 138618, 143520, 146692, 150024, 165880, 165886, 184824, 192192, 194880, 196196, 199056, 216315, 234080, 255360, 269192, 276640, 277236, 287040, 288288, 292320, 293384, 294216, 298584, 300048, 331760
Offset: 1
Keywords
Examples
46206 is in the sequence because the prime distinct divisors of this number are {2, 3, 17, 151} and 2^2 + 3^2 + 17^2 + 151^2 = 23103, then 46206 = 23103*2.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Jean-Marie de Koninck and Florian Luca, Integers divisible by sums of powers of their prime factors, Journal of Number Theory, Volume 128, Issue 3, March 2008, Pages 557-563.
Crossrefs
Cf. A066031.
Programs
-
Maple
with(numtheory):for n from 1 to 200000 do:x:=factorset(n):n1:=nops(x):s:=0:for p from 1 to n1 do: s:=s+x[p]^2:od:if n1 >= 2 and irem(n,s)=0 then printf(`%d,`,n):else fi:od:
-
Mathematica
Select[Range[2,332000],!PrimePowerQ[#]&&Divisible[#,Total[Select[ Divisors[#],PrimeQ]^2]]&] (* Harvey P. Dale, May 24 2022 *)
-
PARI
is(n)=my(f=factor(n)[,1]);#f>2&n%sum(i=1,#f,f[i]^2)==0 \\ Charles R Greathouse IV, May 23 2011
-
PARI
is(n)=n>9 && !isprimepower(n) && n%norml2(factor(n)[,1])==0 \\ Charles R Greathouse IV, Feb 03 2016
Comments