A190959 a(n) = 3*a(n-1) - 5*a(n-2), with a(0)=0, a(1)=1.
0, 1, 3, 4, -3, -29, -72, -71, 147, 796, 1653, 979, -5328, -20879, -35997, -3596, 169197, 525571, 730728, -435671, -4960653, -12703604, -13307547, 23595379, 137323872, 293994721, 195364803, -883879196, -3628461603, -6465988829, -1255658472, 28562968729
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Wikipedia, Lucas sequence
- Index entries for linear recurrences with constant coefficients, signature (3,-5).
Crossrefs
Programs
-
Magma
I:=[0,1]; [n le 2 select I[n] else 3*Self(n-1) - 5*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 25 2018
-
Mathematica
LinearRecurrence[{3,-5}, {0,1}, 50]
-
PARI
x='x+O('x^30); concat([0], Vec(x/(1-3x+5*x^2))) \\ G. C. Greubel, Jan 25 2018
Formula
G.f.: x/(1 - 3*x + 5*x^2). - Philippe Deléham, Oct 11 2011
E.g.f.: 2*exp(3*x/2)*sin(sqrt(11)*x/2)/sqrt(11). - Stefano Spezia, Oct 06 2019
Comments