cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A191032 Primes p with Kronecker symbol (p|46) = 1.

Original entry on oeis.org

5, 11, 19, 31, 37, 41, 43, 47, 53, 61, 67, 71, 73, 83, 107, 109, 127, 149, 151, 157, 167, 181, 193, 223, 227, 229, 233, 239, 251, 257, 271, 283, 293, 311, 353, 373, 379, 389, 409, 419, 421, 439, 449, 463, 467, 487, 523, 557, 563, 571, 577, 593, 599, 601, 607
Offset: 1

Views

Author

T. D. Noe, May 24 2011

Keywords

Comments

Originally incorrectly named "primes which are squares (mod 46)". - M. F. Hasler, Jan 15 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(607) | KroneckerSymbol(p, 46) eq 1]; // Vincenzo Librandi, Sep 11 2012
    
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,46]==1&]
  • PARI
    select(p->kronecker(p,46)==1&&isprime(p),[1..1000]) \\ M. F. Hasler, Jan 15 2016

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016

A191036 Primes p that have Jacobi symbol (p|55) = 1.

Original entry on oeis.org

2, 7, 13, 17, 31, 43, 59, 71, 73, 83, 89, 107, 127, 167, 173, 179, 181, 191, 193, 197, 199, 227, 229, 233, 251, 263, 269, 277, 283, 293, 307, 311, 331, 337, 347, 373, 379, 389, 401, 419, 421, 449, 457, 499, 503, 509, 521, 523, 547, 557, 563, 593, 599, 607
Offset: 1

Views

Author

T. D. Noe, May 24 2011

Keywords

Comments

Originally incorrectly named "primes which are squares mod 55", which is sequence A267478, a subsequence whose terms have (p|5) = (p|11) = 1 except for the two initial terms 5 and 11. - M. F. Hasler, Jan 15 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(607) | JacobiSymbol(p, 55) eq 1]; // Vincenzo Librandi, Sep 10 2012
    
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,55]==1&]
  • PARI
    select(p->kronecker(p,55)==1&&isprime(p),[1..1500]) \\ M. F. Hasler, Jan 15 2016

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016

A191034 Primes p with Jacobi symbol (p|51) = 1.

Original entry on oeis.org

5, 11, 13, 19, 23, 29, 41, 43, 67, 71, 103, 107, 113, 127, 131, 151, 157, 167, 173, 197, 223, 227, 229, 233, 269, 271, 307, 311, 317, 331, 347, 349, 373, 401, 409, 419, 421, 431, 433, 449, 457, 463, 479, 503, 521, 523, 577, 613, 617, 631, 641, 653, 661, 677
Offset: 1

Views

Author

T. D. Noe, May 24 2011

Keywords

Comments

Originally incorrectly named "primes which are squares (mod 51)", which is subsequence A106904. - M. F. Hasler, Jan 15 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(677) | JacobiSymbol(p, 51) eq 1]; // Vincenzo Librandi, Sep 10 2012
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,51]==1&]

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016

A191037 Primes p that have Jacobi symbol (p|58) = 1.

Original entry on oeis.org

3, 7, 11, 19, 23, 37, 43, 61, 71, 101, 103, 131, 151, 157, 163, 167, 199, 211, 223, 229, 233, 239, 241, 251, 257, 269, 281, 293, 307, 313, 317, 331, 353, 379, 383, 389, 401, 421, 431, 439, 443, 457, 461, 463, 467, 487, 491, 521, 541, 563, 593, 619, 631, 647
Offset: 1

Views

Author

T. D. Noe, May 25 2011

Keywords

Comments

Originally incorrectly named "Primes which are squares mod 58", which is sequence A038901. - M. F. Hasler, Jan 15 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(647) | KroneckerSymbol(p, 58) eq 1]; // Vincenzo Librandi, Sep 11 2012
    
  • Maple
    select(t -> isprime(t) and numtheory:-jacobi(t,58)=1, [seq(i,i=3..1000,2)]); # Robert Israel, Jan 15 2016
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,58]==1&]
  • PARI
    select(p->kronecker(p,58)==1&&isprime(p),[1..1000]) \\ This is to provide a generic characteristic function ("is_A191037") as 1st arg of select(), there are other ways to produce the sequence more efficiently. - M. F. Hasler, Jan 15 2016

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016

A191040 Primes p that have Kronecker symbol (p|62) = 1.

Original entry on oeis.org

3, 7, 11, 13, 29, 37, 41, 43, 47, 53, 61, 71, 83, 97, 103, 113, 139, 179, 181, 191, 193, 197, 229, 233, 251, 257, 269, 277, 281, 311, 331, 347, 359, 389, 431, 439, 461, 479, 491, 499, 503, 509, 521, 523, 557, 571, 577, 587, 593, 599, 607, 613, 617, 619, 643
Offset: 1

Views

Author

T. D. Noe, May 25 2011

Keywords

Comments

Originally incorrectly named "primes which are squares (mod 62)", which is sequence A267481. - M. F. Hasler, Jan 15 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(643) | KroneckerSymbol(p, 62) eq 1]; // Vincenzo Librandi, Sep 11 2012
    
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,62]==1&]
  • PARI
    select(p->kronecker(p, 62)==1&&isprime(p), [1..1000]) \\ This is to provide a generic characteristic function ("is_A191040") as 1st arg of select(), there are other ways to produce the sequence more efficiently. - M. F. Hasler, Jan 15 2016

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016

A191042 Primes p that have Jacobi symbol (p|69) = 1.

Original entry on oeis.org

5, 11, 13, 17, 31, 53, 73, 83, 89, 107, 113, 127, 137, 139, 149, 151, 163, 191, 193, 211, 223, 227, 251, 263, 271, 277, 281, 293, 307, 331, 349, 359, 383, 389, 397, 401, 409, 419, 431, 439, 463, 467, 479, 487, 499, 503, 521, 541, 547, 557, 563, 569, 577, 601
Offset: 1

Views

Author

T. D. Noe, May 25 2011

Keywords

Comments

Originally incorrectly named "primes which are squares mod 69", which would be the sequence (3, 13, 31, 73, 127, 139, 151, 163, 193, 211, 223, 271, 277, 307, 331, 349, 397, ...). - M. F. Hasler, Jan 15 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(601) | JacobiSymbol(p, 69) eq 1]; // Vincenzo Librandi, Sep 10 2012
    
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,69]==1&]
  • PARI
    select(p->kronecker(p, 69)==1&&isprime(p), [1..1000]) \\ This is to provide a generic characteristic function ("is_A191043") as 1st arg of select(), there are other ways to produce the sequence more efficiently. - M. F. Hasler, Jan 15 2016

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016

A191043 Primes p that have Kronecker symbol (p|70) = 1.

Original entry on oeis.org

17, 19, 37, 43, 47, 53, 59, 61, 67, 71, 73, 79, 97, 101, 103, 107, 131, 139, 151, 163, 167, 181, 191, 197, 223, 229, 239, 251, 257, 269, 277, 281, 313, 317, 347, 349, 353, 359, 367, 373, 383, 401, 419, 431, 433, 443, 449, 461, 503, 509, 547, 557, 569, 577
Offset: 1

Views

Author

T. D. Noe, May 25 2011

Keywords

Comments

Originally incorrectly named "primes which are squares mod 70", which is sequence A106881. - M. F. Hasler, Jan 15 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(577) | KroneckerSymbol(p, 70) eq 1]; // Vincenzo Librandi, Sep 11 2012
    
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,70]==1&]
  • PARI
    select(p->kronecker(p, 70)==1&&isprime(p), [1..1000]) \\ This is to provide a generic characteristic function ("is_A191043") as 1st arg of select(), there are other ways to produce the sequence more efficiently. - M. F. Hasler, Jan 15 2016

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016

A191046 Primes p that have Kronecker symbol (p|74) = 1.

Original entry on oeis.org

5, 7, 13, 19, 29, 41, 43, 47, 59, 61, 71, 73, 109, 127, 131, 137, 151, 163, 179, 223, 227, 233, 251, 263, 271, 277, 283, 331, 337, 347, 359, 367, 389, 421, 433, 461, 467, 499, 521, 523, 541, 547, 557, 563, 587, 593, 599, 601, 617, 641, 643, 653, 661, 673
Offset: 1

Views

Author

T. D. Noe, May 25 2011

Keywords

Comments

Originally incorrectly named "primes which are squares mod 74", which is sequence A038913. - M. F. Hasler, Jan 15 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(673) | KroneckerSymbol(p, 74) eq 1]; // Vincenzo Librandi, Sep 11 2012
    
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,74]==1&]
  • PARI
    select(p->kronecker(p, 74)==1&&isprime(p), [1..1000]) \\ This is to provide a generic characteristic function ("is_A191046") as 1st arg of select(), there are other ways to produce the sequence more efficiently. - M. F. Hasler, Jan 15 2016

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016

A191049 Primes p that have Kronecker symbol (p|82) = 1.

Original entry on oeis.org

3, 11, 13, 19, 23, 29, 31, 53, 67, 73, 101, 103, 109, 113, 127, 149, 157, 179, 181, 211, 223, 227, 229, 241, 271, 293, 317, 331, 337, 347, 353, 359, 367, 397, 401, 409, 421, 431, 433, 449, 487, 499, 509, 547, 557, 563, 569, 571, 587, 599, 607, 617, 631, 643
Offset: 1

Views

Author

T. D. Noe, May 25 2011

Keywords

Comments

Originally incorrectly named "primes which are squares mod 82", which is sequence A038919. - M. F. Hasler, Jan 15 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(643) | KroneckerSymbol(p, 82) eq 1]; // Vincenzo Librandi, Sep 11 2012
    
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,82]==1&]
  • PARI
    select(p->kronecker(p, 82)==1&&isprime(p), [1..1000]) \\ This is to provide a generic characteristic function ("is_A191049") as 1st arg of select(), there are other ways to produce the sequence more efficiently. - M. F. Hasler, Jan 15 2016

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016

A267455 Primes which are a square (mod 39).

Original entry on oeis.org

3, 13, 43, 61, 79, 103, 127, 139, 157, 181, 199, 211, 277, 283, 313, 337, 367, 373, 433, 439, 523, 547, 571, 601, 607, 673, 727, 751, 757, 823, 829, 859, 883, 907, 919, 937, 991, 997, 1039, 1063, 1069, 1093, 1117, 1153, 1171, 1213, 1231, 1249, 1291, 1297, 1303, 1327, 1381, 1429, 1447, 1453, 1459, 1483
Offset: 1

Views

Author

M. F. Hasler, Jan 15 2016

Keywords

Comments

Motivated by the former (incorrect) definition of A191029.
Also, primes p which have Legendre symbols (p|3) = (p|13) = 1, together with 3 and 13.
Apparently this contains the 3 plus the elements of A139494. - R. J. Mathar, May 28 2025

Crossrefs

Programs

  • Mathematica
    Join[{3, 13}, Select[Prime[Range[500]], JacobiSymbol[#, {3, 13}] == {1, 1} &]] (* Paolo Xausa, May 29 2025 *)
  • PARI
    select(p->issquare(Mod(p,39))&&isprime(p),[1..1000])
Showing 1-10 of 12 results. Next