cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A191034 Primes p with Jacobi symbol (p|51) = 1.

Original entry on oeis.org

5, 11, 13, 19, 23, 29, 41, 43, 67, 71, 103, 107, 113, 127, 131, 151, 157, 167, 173, 197, 223, 227, 229, 233, 269, 271, 307, 311, 317, 331, 347, 349, 373, 401, 409, 419, 421, 431, 433, 449, 457, 463, 479, 503, 521, 523, 577, 613, 617, 631, 641, 653, 661, 677
Offset: 1

Views

Author

T. D. Noe, May 24 2011

Keywords

Comments

Originally incorrectly named "primes which are squares (mod 51)", which is subsequence A106904. - M. F. Hasler, Jan 15 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(677) | JacobiSymbol(p, 51) eq 1]; // Vincenzo Librandi, Sep 10 2012
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,51]==1&]

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016

A191037 Primes p that have Jacobi symbol (p|58) = 1.

Original entry on oeis.org

3, 7, 11, 19, 23, 37, 43, 61, 71, 101, 103, 131, 151, 157, 163, 167, 199, 211, 223, 229, 233, 239, 241, 251, 257, 269, 281, 293, 307, 313, 317, 331, 353, 379, 383, 389, 401, 421, 431, 439, 443, 457, 461, 463, 467, 487, 491, 521, 541, 563, 593, 619, 631, 647
Offset: 1

Views

Author

T. D. Noe, May 25 2011

Keywords

Comments

Originally incorrectly named "Primes which are squares mod 58", which is sequence A038901. - M. F. Hasler, Jan 15 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(647) | KroneckerSymbol(p, 58) eq 1]; // Vincenzo Librandi, Sep 11 2012
    
  • Maple
    select(t -> isprime(t) and numtheory:-jacobi(t,58)=1, [seq(i,i=3..1000,2)]); # Robert Israel, Jan 15 2016
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,58]==1&]
  • PARI
    select(p->kronecker(p,58)==1&&isprime(p),[1..1000]) \\ This is to provide a generic characteristic function ("is_A191037") as 1st arg of select(), there are other ways to produce the sequence more efficiently. - M. F. Hasler, Jan 15 2016

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016

A191040 Primes p that have Kronecker symbol (p|62) = 1.

Original entry on oeis.org

3, 7, 11, 13, 29, 37, 41, 43, 47, 53, 61, 71, 83, 97, 103, 113, 139, 179, 181, 191, 193, 197, 229, 233, 251, 257, 269, 277, 281, 311, 331, 347, 359, 389, 431, 439, 461, 479, 491, 499, 503, 509, 521, 523, 557, 571, 577, 587, 593, 599, 607, 613, 617, 619, 643
Offset: 1

Views

Author

T. D. Noe, May 25 2011

Keywords

Comments

Originally incorrectly named "primes which are squares (mod 62)", which is sequence A267481. - M. F. Hasler, Jan 15 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(643) | KroneckerSymbol(p, 62) eq 1]; // Vincenzo Librandi, Sep 11 2012
    
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,62]==1&]
  • PARI
    select(p->kronecker(p, 62)==1&&isprime(p), [1..1000]) \\ This is to provide a generic characteristic function ("is_A191040") as 1st arg of select(), there are other ways to produce the sequence more efficiently. - M. F. Hasler, Jan 15 2016

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016

A191042 Primes p that have Jacobi symbol (p|69) = 1.

Original entry on oeis.org

5, 11, 13, 17, 31, 53, 73, 83, 89, 107, 113, 127, 137, 139, 149, 151, 163, 191, 193, 211, 223, 227, 251, 263, 271, 277, 281, 293, 307, 331, 349, 359, 383, 389, 397, 401, 409, 419, 431, 439, 463, 467, 479, 487, 499, 503, 521, 541, 547, 557, 563, 569, 577, 601
Offset: 1

Views

Author

T. D. Noe, May 25 2011

Keywords

Comments

Originally incorrectly named "primes which are squares mod 69", which would be the sequence (3, 13, 31, 73, 127, 139, 151, 163, 193, 211, 223, 271, 277, 307, 331, 349, 397, ...). - M. F. Hasler, Jan 15 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(601) | JacobiSymbol(p, 69) eq 1]; // Vincenzo Librandi, Sep 10 2012
    
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,69]==1&]
  • PARI
    select(p->kronecker(p, 69)==1&&isprime(p), [1..1000]) \\ This is to provide a generic characteristic function ("is_A191043") as 1st arg of select(), there are other ways to produce the sequence more efficiently. - M. F. Hasler, Jan 15 2016

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016

A191043 Primes p that have Kronecker symbol (p|70) = 1.

Original entry on oeis.org

17, 19, 37, 43, 47, 53, 59, 61, 67, 71, 73, 79, 97, 101, 103, 107, 131, 139, 151, 163, 167, 181, 191, 197, 223, 229, 239, 251, 257, 269, 277, 281, 313, 317, 347, 349, 353, 359, 367, 373, 383, 401, 419, 431, 433, 443, 449, 461, 503, 509, 547, 557, 569, 577
Offset: 1

Views

Author

T. D. Noe, May 25 2011

Keywords

Comments

Originally incorrectly named "primes which are squares mod 70", which is sequence A106881. - M. F. Hasler, Jan 15 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(577) | KroneckerSymbol(p, 70) eq 1]; // Vincenzo Librandi, Sep 11 2012
    
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,70]==1&]
  • PARI
    select(p->kronecker(p, 70)==1&&isprime(p), [1..1000]) \\ This is to provide a generic characteristic function ("is_A191043") as 1st arg of select(), there are other ways to produce the sequence more efficiently. - M. F. Hasler, Jan 15 2016

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016

A191046 Primes p that have Kronecker symbol (p|74) = 1.

Original entry on oeis.org

5, 7, 13, 19, 29, 41, 43, 47, 59, 61, 71, 73, 109, 127, 131, 137, 151, 163, 179, 223, 227, 233, 251, 263, 271, 277, 283, 331, 337, 347, 359, 367, 389, 421, 433, 461, 467, 499, 521, 523, 541, 547, 557, 563, 587, 593, 599, 601, 617, 641, 643, 653, 661, 673
Offset: 1

Views

Author

T. D. Noe, May 25 2011

Keywords

Comments

Originally incorrectly named "primes which are squares mod 74", which is sequence A038913. - M. F. Hasler, Jan 15 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(673) | KroneckerSymbol(p, 74) eq 1]; // Vincenzo Librandi, Sep 11 2012
    
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,74]==1&]
  • PARI
    select(p->kronecker(p, 74)==1&&isprime(p), [1..1000]) \\ This is to provide a generic characteristic function ("is_A191046") as 1st arg of select(), there are other ways to produce the sequence more efficiently. - M. F. Hasler, Jan 15 2016

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016

A191049 Primes p that have Kronecker symbol (p|82) = 1.

Original entry on oeis.org

3, 11, 13, 19, 23, 29, 31, 53, 67, 73, 101, 103, 109, 113, 127, 149, 157, 179, 181, 211, 223, 227, 229, 241, 271, 293, 317, 331, 337, 347, 353, 359, 367, 397, 401, 409, 421, 431, 433, 449, 487, 499, 509, 547, 557, 563, 569, 571, 587, 599, 607, 617, 631, 643
Offset: 1

Views

Author

T. D. Noe, May 25 2011

Keywords

Comments

Originally incorrectly named "primes which are squares mod 82", which is sequence A038919. - M. F. Hasler, Jan 15 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(643) | KroneckerSymbol(p, 82) eq 1]; // Vincenzo Librandi, Sep 11 2012
    
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,82]==1&]
  • PARI
    select(p->kronecker(p, 82)==1&&isprime(p), [1..1000]) \\ This is to provide a generic characteristic function ("is_A191049") as 1st arg of select(), there are other ways to produce the sequence more efficiently. - M. F. Hasler, Jan 15 2016

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016

A191051 Primes p that have Kronecker symbol (p|86) = 1.

Original entry on oeis.org

3, 5, 17, 19, 23, 29, 31, 37, 41, 47, 61, 79, 97, 103, 127, 131, 149, 157, 163, 167, 179, 193, 211, 227, 239, 271, 277, 281, 311, 331, 337, 347, 349, 353, 359, 367, 373, 389, 401, 419, 421, 431, 439, 467, 479, 487, 491, 499, 523, 569, 571, 587, 599, 617, 653
Offset: 1

Views

Author

T. D. Noe, May 25 2011

Keywords

Comments

Originally incorrectly named "primes which are squares mod 86", which is sequence A106891. - M. F. Hasler, Jan 15 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(653) | KroneckerSymbol(p, 86) eq 1]; // Vincenzo Librandi, Sep 11 2012
    
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,86]==1&]
  • PARI
    select(p->kronecker(p, 86)==1&&isprime(p), [1..1000]) \\ This is to provide a generic characteristic function ("is_A191051") as 1st arg of select(), there are other ways to produce the sequence more efficiently. - M. F. Hasler, Jan 15 2016

Extensions

Definition corrected by M. F. Hasler, Jan 15 2016

A191074 Primes p that have Kronecker symbol (p|55) = -1.

Original entry on oeis.org

3, 19, 23, 29, 37, 41, 47, 53, 61, 67, 79, 97, 101, 103, 109, 113, 131, 137, 139, 149, 151, 157, 163, 211, 223, 239, 241, 257, 271, 281, 313, 317, 349, 353, 359, 367, 383, 397, 409, 431, 433, 439, 443, 461, 463, 467, 479, 487, 491, 541, 569, 571, 577, 587
Offset: 1

Views

Author

T. D. Noe, May 25 2011

Keywords

Comments

Originally erroneously named "Primes that are not squares mod 55", which contains this as a subsequence. - M. F. Hasler, Jan 18 2016

Crossrefs

Cf. A191036.

Programs

  • Magma
    [p: p in PrimesUpTo(587) | JacobiSymbol(p, 55) eq -1]; // Vincenzo Librandi, Sep 11 2012
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,55]==-1&]

Extensions

Definition corrected, following a suggestion from David Broadhurst, by M. F. Hasler, Jan 18 2016

A267478 Primes which are squares (mod 55).

Original entry on oeis.org

5, 11, 31, 59, 71, 89, 179, 181, 191, 199, 229, 251, 269, 311, 331, 379, 389, 401, 419, 421, 449, 499, 509, 521, 599, 619, 631, 641, 661, 691, 709, 719, 751, 829, 839, 859, 881, 911, 929, 971, 991, 1021, 1039, 1049, 1061, 1109, 1171, 1181, 1259, 1279, 1291, 1301, 1321, 1409, 1439, 1489, 1499
Offset: 1

Views

Author

M. F. Hasler, Jan 15 2016

Keywords

Comments

5, 11 and all primes congruent to 1, 4, 9, 14, 16, 26, 31, 34, 36, or 49 (mod 55). - Robert Israel, Jan 15 2016

Crossrefs

Cf. A106904 and adjacent sequences.
Cf. A191036.

Programs

  • Maple
    S55:= {seq(x^2 mod 55, x=0..27)}:
    select(t -> member(t mod 55, S55), [seq(ithprime(i),i=1..1000)]); # Robert Israel, Jan 15 2016
  • Mathematica
    Join[{5,11},Select[Prime[Range[250]],MemberQ[{1,4,9,14,16,26,31,34,36,49},Mod[#,55]]&]] (* Harvey P. Dale, Jan 17 2022 *)
  • PARI
    select(p->issquare(Mod(p,55))&&isprime(p),[1..1500]) \\ It would be more efficient to select only among primes, replacing [1..1500] by primes([1,1500]), in which case the isprime() condition can be omitted from the selection function. But we wanted to provide a universally valid characteristic function in the 1st argument of select(). - M. F. Hasler, Jan 15 2016
Showing 1-10 of 10 results.