A191150 Hypersigma(n), definition 1: sum of the divisors of n plus the recursive sum of the divisors of the restricted divisors.
1, 3, 4, 10, 6, 19, 8, 28, 17, 27, 12, 64, 14, 35, 34, 72, 18, 82, 20, 88, 44, 51, 24, 188, 37, 59, 61, 112, 30, 165, 32, 176, 64, 75, 62, 290, 38, 83, 74, 252, 42, 209, 44, 160, 139, 99, 48, 512, 65, 166, 94, 184, 54, 306, 90, 316, 104, 123, 60, 588, 62, 131
Offset: 1
Examples
a(12) = 64 since: the sum of the divisors of 12 is 28; to 28 we add 3 and 4 (corresponding to the prime divisors 2 and 3) bringing us up to 35; for 4 and 6 we continue the recursion, with 4 bringing us up to 45 and 6 brings up to 64.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 1000 terms from Alonso del Arte)
- Jon Maiga, Computer-generated formulas for A191150, Sequence Machine.
Crossrefs
Programs
-
Maple
a:= proc(n) option remember; uses numtheory; sigma(n)+add(a(d), d=divisors(n) minus {1,n}) end: seq(a(n), n=1..100); # Alois P. Heinz, Aug 01 2023
-
Mathematica
hyperSigma[1] := 1; hyperSigma[n_] := hyperSigma[n] = Module[{d=Divisors[n]}, Total[d] + Total[hyperSigma /@ Rest[Most[d]]]]; Table[hyperSigma[n], {n, 100}] (* From T. D. Noe with a slight modification *)
-
PARI
A191150(n) = (sigma(n)+sumdiv(n,d,if((d>1)&&(d
A191150(d), 0))); \\ (after the Maple-program) - Antti Karttunen, Nov 22 2024
Formula
a(n) = n + 1 <=> n is prime. - Bill McEachen, Aug 01 2023
For n > 1, a(n) = A191161(n) - A074206(n). [Conjectured by Sequence Machine] - Antti Karttunen, Nov 22 2024
Extensions
Example corrected by Paolo P. Lava, Jul 13 2011
Comments