A093387 a(n) = 2^(n-1) - binomial(n, floor(n/2)).
0, 0, 1, 2, 6, 12, 29, 58, 130, 260, 562, 1124, 2380, 4760, 9949, 19898, 41226, 82452, 169766, 339532, 695860, 1391720, 2842226, 5684452, 11576916, 23153832, 47050564, 94101128, 190876696, 381753392, 773201629, 1546403258, 3128164186, 6256328372, 12642301534
Offset: 1
Keywords
Examples
a(5)=6 because, denoting U=(1,1), D=(1,-1), H=(1,0), in HHHH, HHUD, HUDH, UDHH, UDUD, and UUDD we have 0+1+1+1+2+1=6 U steps starting at level 0. - _Emeric Deutsch_, May 30 2011 a(5)=6 because there are 6 north-east paths starting with N which visit a point strictly east of the main diagonal: NNEEE, NENEE, NEENN, NEENE, NEEEN, NEEEE. - _Isaac Grosof_, Jan 16 2023
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Matthijs Coster, Sequences
- Matthijs Coster, Statements and Representatives, 2004.
- Vladimir Shevelev, A Mathar's conjecture, Seqfan, Nov 17 2017.
Programs
-
Maple
A093387:=n->2^(n-1)-binomial(n, floor(n/2)); seq(A093387(n), n=1..50); # Wesley Ivan Hurt, Dec 01 2013
-
Mathematica
Table[2^(n - 1) - Binomial[n, Floor[n/2]], {n, 50}] (* Wesley Ivan Hurt, Dec 01 2013 *)
-
PARI
a(n) = 2^(n-1) - binomial(n, n\2); \\ Michel Marcus, Aug 13 2013
Formula
a(n+1) = Sum_{k=2..n} binomial(n, floor((n-k)/2)). - Paul Barry, Jan 11 2007
a(2n) = 2*a(2n-1). - Emeric Deutsch, May 30 2011
a(n+1) = Sum_{k>=0} k*A191310(n,k). - Emeric Deutsch, May 30 2011
G.f.: (1-sqrt(1-4*z^2))^2/(4*z*(1-2*z)). - Emeric Deutsch, May 30 2011
Conjecture: (n+1)*a(n) + 2*(-n-1)*a(n-1) + 4*(-n+2)*a(n-2) + 8*(n-2)*a(n-3) = 0. - R. J. Mathar, Nov 30 2012
a(2*n+1) = 2*a(2*n) + A000108(n). Together with the first formula by Emeric Deutsch, we have a simple system of recursions. Using them, we can prove Mathar's conjecture. For example, let n be odd, n=2*m+1. By the left hand side of Mathar's conjecture, we have (2*m+2)*a(2*m+1) - 2*(2*m+2)*a(2*m) - 4*(2*m-1)*a(2*m-1) + 8(2*m-1)*a(2*m-2) = (2*m+2)*(2*a(2*m) + A000108(m) - 2*a(2*m)) - 4*(2*m-1)*(2*a(2*m-2) + A000108(m-1) - 2*a(2*m-2)) = (2*m+2)*A000108(m) - 4*(2*m-1)*A000108(m-1) = 0, since A000108(m) = binomial(2*m, m)/(m+1). - Vladimir Shevelev, Nov 17 2017
Extensions
Offset corrected by R. J. Mathar, Jun 04 2011
Comments
= 0). - Isaac Grosof, Jan 16 2023