A191387
Triangle read by rows: T(n,k) is the number of dispersed Dyck paths of length n with k valleys at level 0.
Original entry on oeis.org
1, 1, 2, 3, 5, 1, 8, 2, 14, 5, 1, 23, 10, 2, 41, 22, 6, 1, 69, 42, 13, 2, 125, 87, 32, 7, 1, 214, 164, 66, 16, 2, 393, 330, 149, 43, 8, 1, 682, 618, 301, 94, 19, 2, 1267, 1225, 648, 227, 55, 9, 1, 2223, 2288, 1290, 484, 126, 22, 2, 4171, 4498, 2700, 1100, 322, 68, 10, 1, 7385, 8396, 5322, 2300, 718, 162, 25, 2
Offset: 0
T(5,1)=2 because we have HUDUD and UDUDH, where U=(1,1), D=(1,-1), H=(1,0).
Triangle starts:
1;
1;
2;
3;
5, 1;
8, 2;
14, 5, 1;
23, 10, 2;
41, 22, 6, 1;
...
-
G := (1+z^2*c-t*z^2*c)/(1-z-z^3*c-t*z^2*c*(1-z)): c := ((1-sqrt(1-4*z^2))*1/2)/z^2: Gser := simplify(series(G, z = 0, 20)): for n from 0 to 17 do P[n] := sort(coeff(Gser, z, n)) end do: 1; 1; for n from 2 to 17 do seq(coeff(P[n], t, k), k = 0 .. floor((1/2)*n)-1) end do; # yields sequence in triangular form
A123514
Triangle read by rows: T(n,k) is the number of involutions of {1,2,...,n} with exactly k fixed points and which contain the pattern 321 exactly once (n>=3; 1<=k<=n-2).
Original entry on oeis.org
1, 0, 2, 4, 0, 3, 0, 10, 0, 4, 14, 0, 18, 0, 5, 0, 40, 0, 28, 0, 6, 48, 0, 81, 0, 40, 0, 7, 0, 150, 0, 140, 0, 54, 0, 8, 165, 0, 330, 0, 220, 0, 70, 0, 9, 0, 550, 0, 616, 0, 324, 0, 88, 0, 10, 572, 0, 1287, 0, 1040, 0, 455, 0, 108, 0, 11, 0, 2002, 0, 2548, 0, 1638, 0, 616, 0, 130, 0, 12
Offset: 3
T(4,2)=2 because we have 1432 and 3214 (also 4231 is an involution with 2 fixed points but contains twice the pattern 321: 421 and 431).
Triangle starts:
1;
0, 2;
4, 0, 3;
0, 10, 0, 4;
14, 0, 18, 0, 5;
0, 40, 0, 28, 0, 6;
48, 0, 81, 0, 40, 0, 7;
0, 150, 0, 140, 0, 54, 0, 8;
165, 0, 330, 0, 220, 0, 70, 0, 9;
0, 550, 0, 616, 0, 324, 0, 88, 0, 10;
572, 0, 1287, 0, 1040, 0, 455, 0, 108, 0, 11;
-
A123514:= func< n,k | ((1+(-1)^(n-k))/(2*(n+1)))*k*(k+3)*Binomial(n+1, Floor((n-k-2)/2)) >;
[A123514(n,k): k in [1..n-2], n in [3..15]]; // G. C. Greubel, Jan 15 2022
-
T:=proc(n,k) if n-k mod 2 = 0 and k<=n then k*(k+3)*binomial(n+1,(n-k)/2-1)/(n+1) else 0 fi end: for n from 3 to 15 do seq(T(n,k),k=1..n-2) od; # yields sequence in triangular form
-
T[n_, k_]:= ((1+(-1)^(n-k))/2)*k*(k+3)*Binomial[n+1, (n-k-2)/2]/(n+1);
Table[T[n, k], {n, 3, 15}, {k, n-2}]//Flatten (* G. C. Greubel, Jan 15 2022 *)
-
def A123514(n,k): return ((1+(-1)^(n-k))/(2*(n+1)))*k*(k+3)*binomial(n+1, (n-k-2)//2)
flatten([[A123514(n,k) for k in (1..n-2)] for n in (3..15)]) # G. C. Greubel, Jan 15 2022
A191397
Triangle read by rows: T(n,k) is the number of dispersed Dyck paths of length n (i.e., Motzkin paths of length n with no (1,0)-steps at positive heights) having k DHU's (here U=(1,1), H=(1,0), and D=(1,-1)).
Original entry on oeis.org
1, 1, 2, 3, 6, 9, 1, 18, 2, 28, 7, 56, 14, 89, 37, 179, 72, 1, 289, 170, 3, 585, 326, 13, 956, 726, 34, 1948, 1380, 104, 3214, 2970, 250, 1, 6591, 5616, 659, 4, 10959, 11829, 1502, 20, 22609, 22300, 3647, 64, 37833, 46306, 8019, 220, 78486, 87154, 18495, 620, 1, 132037, 179222, 39648, 1804, 5
Offset: 0
T(6,1)=2 because we have HU(DHU)D and U(DHU)DH, where U=(1,1), D=(1,-1), H=(1,0) (the DHU's are shown between parentheses).
Triangle starts:
1;
1;
2;
3;
6;
9, 1;
18, 2;
28, 7;
56, 14;
-
G := 2/(1-z-2*z^3-t*z+2*t*z^3+(1-z+t*z)*sqrt(1-4*z^2)): Gser := simplify(series(G, z = 0, 25)): for n from 0 to 21 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 21 do seq(coeff(P[n], t, k), k = 0 .. floor((1/5)*n)) end do; # yields sequence in triangular form
A348013
Triangle by rows: T(n,k) is the number of n-step Dyck paths with k catastrophes.
Original entry on oeis.org
1, 1, 1, 3, 2, 1, 4, 7, 3, 1, 10, 14, 12, 4, 1, 15, 37, 31, 18, 5, 1, 35, 74, 90, 56, 25, 6, 1, 56, 176, 216, 179, 90, 33, 7, 1, 126, 352, 552, 492, 315, 134, 42, 8, 1, 210, 794, 1269, 1362, 966, 510, 189, 52, 9, 1, 462, 1588, 3033, 3480, 2890, 1716, 777, 256, 63, 10, 1, 792, 3473
Offset: 1
The triangle starts
1
1 1
3 2 1
4 7 3 1
10 14 12 4 1
15 37 31 18 5 1
35 74 90 56 25 6 1
56 176 216 179 90 33 7 1
126 352 552 492 315 134 42 8 1
210 794 1269 1362 966 510 189 52 9 1
462 1588 3033 3480 2890 1716 777 256 63 10 1
792 3473 6781 8901 8060 5521 2835 1130 336 75 11 1
T(1,1)=1 counts U| where the vertical bar indicates starting a new path at the horizontal axis (the catastrophe).
T(2,1)=1 counts UU|.
T(4,1)=4 counts UUUU|, UUUD|, UUDU|, UDUU|.
T(3,2)=2 counts UU|U| and U|UU| .
T(4,2)=7 counts U|UUU|, U|UUD|, U|UDU|, UU|UU|, UUU|U|, UUD|U| and UDU|U|.
Showing 1-4 of 4 results.
Comments