cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191750 Dirichlet convolution of A000012 with A007947.

Original entry on oeis.org

1, 3, 4, 5, 6, 12, 8, 7, 7, 18, 12, 20, 14, 24, 24, 9, 18, 21, 20, 30, 32, 36, 24, 28, 11, 42, 10, 40, 30, 72, 32, 11, 48, 54, 48, 35, 38, 60, 56, 42, 42, 96, 44, 60, 42, 72, 48, 36, 15, 33, 72, 70, 54, 30, 72, 56, 80, 90, 60, 120, 62, 96, 56, 13, 84, 144, 68, 90, 96, 144, 72
Offset: 1

Views

Author

Keywords

Comments

The squarefree kernel of n is sometimes called rad(n).
Sequence is multiplicative with a(p^e) = 1 + p*e.
Dirichlet convolution of A000005 with the function of absolute values of A097945. - R. J. Mathar, Jul 12 2011
Dirichlet convolution of phi(n)*mu(n)^2 with tau(n). - Richard L. Ollerton, May 07 2021

Examples

			The divisors of 12 are 1,2,3,4,6 and 12, the squarefree kernels of these numbers are 1,2,3,2,6 and 6, so a(12) = 1+2+3+2+6+6 = 20.
		

Crossrefs

Cf. A007947, A000012 (all 1's sequence), A005117, A073355.

Programs

  • Magma
    A007947:=func< n | &*PrimeDivisors(n) >; A191750:=func< n | &+[ A007947(d): d in Divisors(n) ] >; [ A191750(n): n in [1..80] ]; // Klaus Brockhaus, Jun 27 2011
  • Maple
    with(numtheory): A191750 := n -> add(ilcm(op(factorset(k))),k=divisors(n)):
    seq(A191750(i), i=1..80); # Peter Luschny, Jun 23 2011
  • Mathematica
    rad[n_]:=Times@@(FactorInteger[n][[All,1]]); A191750[n_]:=Plus@@rad/@Divisors[n]; Array[A191750,50]
    a[1] = 1; a[n_] := Times @@ ((1 + First[#] * Last[#])& /@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 21 2020 *)
  • PARI
    rad(n)=local(p); p=factor(n)[, 1]; prod(i=1, length(p), p[i]);
    A191750(n)=sumdiv(n, d, rad(d))
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + p*X - X)/(1 - X)^2)[n], ", ")) \\ Vaclav Kotesovec, Jun 19 2020
    

Formula

a(n) = Sum_{d|n} rad(d) = Sum_{d|n} A007947(d).
a(n) <= sigma_1(n) = A000203(n); equality holds if n is a squarefree number (A005117).
Dirichlet g.f.: zeta^2(s)*Product_{primes p} (1+p^(1-s)-p^(-s)). - R. J. Mathar, Jul 12 2011
G.f.: Sum_{k>=1} rad(k)*x^k/(1 - x^k). - Ilya Gutkovskiy, Nov 06 2018
a(n) = Sum_{d|n} mu(d)^2*phi(d)*tau(n/d). - Ridouane Oudra, Nov 19 2019
From Vaclav Kotesovec, Jun 19 2020: (Start)
Dirichlet g.f.: zeta(s)^2 * zeta(s-1) / zeta(2*s-2) * Product_{primes p} (1 - 1/(p^s + p)).
Dirichlet g.f.: zeta(s)^2 * zeta(s-1) * Product_{primes p} (1 + p^(1-2*s) - p^(2-2*s) - p^(-s)).
Sum_{k=1..n} a(k) ~ c * Pi^2 * n^2 / 12, where c = A065463 = Product_{p prime} (1 - 1/(p*(p+1))) = 0.70444220099916559... (End)
From Richard L. Ollerton, May 07 2021: (Start)
a(n) = Sum_{k=1..n} mu(n/gcd(n,k))^2*tau(gcd(n,k)).
a(n) = Sum_{k=1..n} mu(gcd(n,k))^2*tau(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)