cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A326306 Dirichlet g.f.: zeta(s) * zeta(s-1) * Product_{p prime} (1 - p^(1 - s) + p^(-s)).

Original entry on oeis.org

1, 2, 2, 4, 2, 4, 2, 8, 5, 4, 2, 8, 2, 4, 4, 16, 2, 10, 2, 8, 4, 4, 2, 16, 7, 4, 14, 8, 2, 8, 2, 32, 4, 4, 4, 20, 2, 4, 4, 16, 2, 8, 2, 8, 10, 4, 2, 32, 9, 14, 4, 8, 2, 28, 4, 16, 4, 4, 2, 16, 2, 4, 10, 64, 4, 8, 2, 8, 4, 8, 2, 40, 2, 4, 14, 8, 4, 8, 2, 32, 41, 4, 2, 16, 4
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 17 2019

Keywords

Comments

Inverse Moebius transform of A003557.
Dirichlet convolution of A000203 with A097945.

Crossrefs

Cf. A000010, A000079 (fixed points), A000203, A003557, A007947, A008683, A098108 (parity of a(n)), A191750, A300717, A335032.

Programs

  • Mathematica
    Table[Sum[d/Last[Select[Divisors[d], SquareFreeQ]], {d, Divisors[n]}], {n, 1, 85}]
    Table[Sum[MoebiusMu[n/d] EulerPhi[n/d] DivisorSigma[1, d], {d, Divisors[n]}], {n, 1, 85}]
    f[p_, e_] := 1 + (p^e-1)/(p-1); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 14 2020 *)
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - p*X + X)/(1 - X)/(1 - p*X))[n], ", ")) \\ Vaclav Kotesovec, Jun 14 2020

Formula

G.f.: Sum_{k>=1} (k / rad(k)) * x^k / (1 - x^k), where rad = A007947.
a(n) = Sum_{d|n} A003557(d).
a(n) = Sum_{d|n} mu(n/d) * phi(n/d) * sigma(d), where mu = A008683, phi = A000010 and sigma = A000203.
a(p) = 2, where p is prime.
From Vaclav Kotesovec, Jun 20 2020: (Start)
Dirichlet g.f.: zeta(s) * Product_{primes p} (1 + 1/(p^s - p)).
Dirichlet g.f.: zeta(s) * zeta(2*s-2) * Product_{primes p} (1 + p^(1-2*s) - p^(2-2*s) + p^(-s)). (End)
Multiplicative with a(p^e) = 1 + (p^e-1)/(p-1). - Amiram Eldar, Oct 14 2020
From Richard L. Ollerton, May 07 2021: (Start)
a(n) = Sum_{k=1..n} mu(n/gcd(n,k))*sigma(gcd(n,k)).
a(n) = Sum_{k=1..n} mu(gcd(n,k))*sigma(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)

A349694 Dirichlet convolution of the squarefree kernel function (A007947) with itself.

Original entry on oeis.org

1, 4, 6, 8, 10, 24, 14, 12, 15, 40, 22, 48, 26, 56, 60, 16, 34, 60, 38, 80, 84, 88, 46, 72, 35, 104, 24, 112, 58, 240, 62, 20, 132, 136, 140, 120, 74, 152, 156, 120, 82, 336, 86, 176, 150, 184, 94, 96, 63, 140, 204, 208, 106, 96, 220, 168, 228, 232, 118, 480
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 25 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Last[Select[Divisors[d], SquareFreeQ]] Last[Select[Divisors[n/d], SquareFreeQ]], {d, Divisors[n]}], {n, 1, 60}]
    f[p_, e_] := (e - 1)*p^2 + 2*p; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 60] (* Amiram Eldar, Nov 25 2021 *)
  • PARI
    A007947(n) = factorback(factorint(n)[, 1]); \\ From A007947
    A349694(n) = sumdiv(n,d,A007947(n/d)*A007947(d)); \\ Antti Karttunen, Nov 25 2021

Formula

Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 + p^(1-s) - p^(-s))^2.
a(n) = Sum_{d|n} A007947(d) * A007947(n/d).
a(n) = Sum_{d|n} abs(A097945(d)) * A191750(n/d).
Multiplicative with a(p^e) = (e-1)*p^2 + 2*p. - Amiram Eldar, Nov 25 2021
From Vaclav Kotesovec, Nov 26 2021: (Start)
Dirichlet g.f.: zeta(s-1)^2 * zeta(s)^2 * Product_{primes p} (1 + p^(1-2*s) - p^(2-2*s) - p^(-s))^2.
Let f(s) = Product_{primes p} (1 + p^(1-2*s) - p^(2-2*s) - p^(-s)), then
Sum_{k=1..n} a(k) ~ Pi^2 * f(2)^2 * n^2 / 144 * (Pi^2 * (2*log(n) + 4*gamma - 1 + 4*f'(2)/f(2)) + 24*zeta'(2)), where f(2) = Product_{primes p} (1 - 2/p^2 + 1/p^3) = A065464 = 0.428249505677094440218765707581823546121298513355936144..., f'(2) = f(2) * Sum_{primes p} log(p) * (3*p - 2) / (p^3 - 2*p + 1) = 0.6293283828324697510445630056425352981207558777167836747744750359407300858..., zeta'(2) = -A073002 and gamma is the Euler-Mascheroni constant A001620. (End)
Showing 1-2 of 2 results.