cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A056798 Prime powers with even nonnegative exponents.

Original entry on oeis.org

1, 4, 9, 16, 25, 49, 64, 81, 121, 169, 256, 289, 361, 529, 625, 729, 841, 961, 1024, 1369, 1681, 1849, 2209, 2401, 2809, 3481, 3721, 4096, 4489, 5041, 5329, 6241, 6561, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12769, 14641, 15625, 16129, 16384
Offset: 1

Views

Author

Labos Elemer, Aug 28 2000

Keywords

Comments

Also numbers whose geometric mean of divisors is an integer. - Ctibor O. Zizka, Sep 29 2008
This is just a special case. In fact, the numbers whose geometric mean of divisors is an integer are all the squares of integers (A000290). - Daniel Lignon, Nov 29 2014

Crossrefs

Programs

  • Mathematica
    Take[Union[Flatten[Table[Prime[n]^k, {n, 31}, {k, 0, 14, 2}]]], 45] (* Alonso del Arte, Jul 05 2011 *)
  • PARI
    is(n)=my(e=isprimepower(n)); if(e, e%2==0, n==1) \\ Charles R Greathouse IV, Sep 18 2015
    
  • Python
    from sympy import primepi, integer_nthroot
    def A056798(n):
        if n==1: return 1
        def f(x): return int(n-2+x-sum(primepi(integer_nthroot(x,k)[0])for k in range(2,x.bit_length(),2)))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 13 2024

Formula

a(n) = A025473(n)^(2*A025474(n)) = A000961(n)^2;
A001222(a(n)) mod 2 = 0;
A003415(a(n)) = A192083(n); A068346(a(n)) = A192084(n). - Reinhard Zumkeller, Jun 26 2011
Sum_{n>=2} 1/a(n) = A154945. - Amiram Eldar, Sep 21 2020

A192083 Arithmetic derivative of squares of prime powers: a(n) = A003415(A056798(n)).

Original entry on oeis.org

0, 4, 6, 32, 10, 14, 192, 108, 22, 26, 1024, 34, 38, 46, 500, 1458, 58, 62, 5120, 74, 82, 86, 94, 1372, 106, 118, 122, 24576, 134, 142, 146, 158, 17496, 166, 178, 194, 202, 206, 214, 218, 226, 5324, 18750, 254, 114688, 262, 274, 278, 298, 302, 314, 326, 334
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 26 2011

Keywords

Comments

A001787 and A024622 give record values and where they occur.

Crossrefs

Programs

  • Mathematica
    s[n_] := If[PrimePowerQ[n], f = FactorInteger[n][[1]]; 2*f[[2]]*n^(2 - 1/f[[2]]), Nothing]; s[1] = 0; Array[s, 200] (* Amiram Eldar, Apr 06 2025 *)

Formula

a(n) = 2 * A025474(n) * A025473(n)^(2*A025474(n) - 1).
A192084(n) = A003415(a(n)).
Showing 1-2 of 2 results.