cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A192083 Arithmetic derivative of squares of prime powers: a(n) = A003415(A056798(n)).

Original entry on oeis.org

0, 4, 6, 32, 10, 14, 192, 108, 22, 26, 1024, 34, 38, 46, 500, 1458, 58, 62, 5120, 74, 82, 86, 94, 1372, 106, 118, 122, 24576, 134, 142, 146, 158, 17496, 166, 178, 194, 202, 206, 214, 218, 226, 5324, 18750, 254, 114688, 262, 274, 278, 298, 302, 314, 326, 334
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 26 2011

Keywords

Comments

A001787 and A024622 give record values and where they occur.

Crossrefs

Programs

  • Mathematica
    s[n_] := If[PrimePowerQ[n], f = FactorInteger[n][[1]]; 2*f[[2]]*n^(2 - 1/f[[2]]), Nothing]; s[1] = 0; Array[s, 200] (* Amiram Eldar, Apr 06 2025 *)

Formula

a(n) = 2 * A025474(n) * A025473(n)^(2*A025474(n) - 1).
A192084(n) = A003415(a(n)).

A192084 Second arithmetic derivative of squares of prime powers: a(n)=A068346(A056798(n)).

Original entry on oeis.org

0, 4, 5, 80, 7, 9, 640, 216, 13, 15, 5120, 19, 21, 25, 800, 3645, 31, 33, 26624, 39, 43, 45, 49, 1960, 55, 61, 63, 167936, 69, 73, 75, 81, 67068, 85, 91, 99, 103, 105, 109, 111, 115, 6776, 34375, 129, 819200, 133, 139, 141, 151, 153, 159, 165, 169, 10816
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 26 2011

Keywords

Comments

a(n) = A003415(A192083(n));

A025474 Exponent of the n-th prime power A000961(n).

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 1, 1, 1, 2, 3, 1, 1, 5, 1, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 8, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Keywords

Comments

a(n) is the number of automorphisms on the field with order A000961(n). This group of automorphisms is cyclic of order a(n). - Geoffrey Critzer, Feb 23 2018

Crossrefs

Cf. A000961 (the prime powers), A025473 (prime root of these), A100995 (exponent of prime powers or 0 otherwise), A001222 (bigomega), A056798 (prime powers with even exponents).
Cf. A117331.

Programs

  • Haskell
    a025474 = a001222 . a000961 -- Reinhard Zumkeller, Aug 13 2013
    
  • Mathematica
    Prepend[Table[ FactorInteger[q][[1, 2]], {q,
    Select[Range[1, 1000], PrimeNu[#] == 1 &]}], 0] (* Geoffrey Critzer, Feb 23 2018 *)
  • PARI
    A025474_upto(N)=apply(bigomega, A000961_list(N)) \\ M. F. Hasler, Jun 16 2022
    
  • Python
    A025474_upto = lambda N: [A001222(n) for n in A000961_list(N)] # M. F. Hasler, Jun 16 2022
    
  • Python
    from sympy import prime, integer_nthroot, factorint
    def A025474(n):
        if n == 1: return 0
        def f(x): return int(n+x-1-sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length())))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return list(factorint(m).values())[0] # Chai Wah Wu, Aug 15 2024

Formula

a(n) = A100995(A000961(n)).
A000961(n) = A025473(n)^a(n); A056798(n) = A025473(n)^(2*a(n));
A192015(n) = a(n)*A025473(n)^(a(n)-1). - Reinhard Zumkeller, Jun 24 2011
a(n) = A001222(A000961(n)). - David Wasserman, Feb 16 2006

Extensions

Edited by M. F. Hasler, Jun 16 2022

A025473 a(1) = 1; for n > 1, a(n) = prime root of n-th prime power (A000961).

Original entry on oeis.org

1, 2, 3, 2, 5, 7, 2, 3, 11, 13, 2, 17, 19, 23, 5, 3, 29, 31, 2, 37, 41, 43, 47, 7, 53, 59, 61, 2, 67, 71, 73, 79, 3, 83, 89, 97, 101, 103, 107, 109, 113, 11, 5, 127, 2, 131, 137, 139, 149, 151, 157, 163, 167, 13, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239
Offset: 1

Views

Author

David W. Wilson, Dec 11 1999

Keywords

Comments

This sequence is related to the cyclotomic sequences A013595 and A020500, leading to the procedure used in the Mathematica program. - Roger L. Bagula, Jul 08 2008
"LCM numeral system": a(n+1) is radix for index n, n >= 0; a(-n+1) is 1/radix for index n, n < 0. - Daniel Forgues, May 03 2014
This is the LCM-transform of A000961; same as A014963 with all 1's (except a(1)) removed. - David James Sycamore, Jan 11 2024

References

  • Paul J. McCarthy, Algebraic Extensions of Fields, Dover books, 1976, pages 40, 69

Crossrefs

Programs

  • Haskell
    a025473 = a020639 . a000961 -- Reinhard Zumkeller, Aug 14 2013
    
  • Maple
    cvm := proc(n, level) local f,opf; if n < 2 then RETURN() fi;
    f := ifactors(n); opf := op(1,op(2,f)); if nops(op(2,f)) > 1 or
    op(2,opf) <= level then RETURN() fi; op(1,opf) end:
    A025473_list := n -> [1,seq(cvm(i,0),i=1..n)];
    A025473_list(240); # Peter Luschny, Sep 21 2011
  • Mathematica
    a = Join[{1}, Flatten[Table[If[PrimeQ[Apply[Plus, CoefficientList[Cyclotomic[n, x], x]]], Apply[Plus, CoefficientList[Cyclotomic[n, x], x]], {}], {n, 1, 1000}]]] (* Roger L. Bagula, Jul 08 2008 *)
    Join[{1}, First@ First@# & /@ FactorInteger@ Select[Range@ 240, PrimePowerQ]] (* Robert G. Wilson v, Aug 17 2017 *)
  • PARI
    print1(1); for(n=2,1e3, if(isprimepower(n,&p), print1(", "p))) \\ Charles R Greathouse IV, Apr 28 2014
    
  • Python
    from sympy import primepi, integer_nthroot, primefactors
    def A025473(n):
        if n == 1: return 1
        def f(x): return int(n+x-1-sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length())))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return primefactors(m)[0] # Chai Wah Wu, Aug 15 2024
  • Sage
    def A025473_list(n) :
        R = [1]
        for i in (2..n) :
            if i.is_prime_power() :
                R.append(prime_divisors(i)[0])
        return R
    A025473_list(239) # Peter Luschny, Feb 07 2012
    

Formula

a(n) = A006530(A000961(n)) = A020639(A000961(n)). - David Wasserman, Feb 16 2006
From Reinhard Zumkeller, Jun 26 2011: (Start)
A000961(n) = a(n)^A025474(n).
A056798(n) = a(n)^(2*A025474(n)).
A192015(n) = A025474(n)*a(n)^(A025474(n)-1). (End)
a(1) = A051451(1) ; for n > 1, a(n) = A051451(n)/A051451(n-1). - Peter Munn, Aug 11 2024

Extensions

Offset corrected by David Wasserman, Dec 22 2008

A154945 Decimal expansion of Sum_{p} 1/(p^2-1), summed over the primes p = A000040.

Original entry on oeis.org

5, 5, 1, 6, 9, 3, 2, 9, 7, 6, 5, 6, 9, 9, 9, 1, 8, 4, 4, 3, 9, 7, 3, 1, 0, 2, 3, 9, 7, 1, 3, 4, 3, 5, 7, 8, 1, 3, 1, 5, 0, 0, 3, 7, 7, 7, 7, 8, 6, 2, 8, 2, 5, 2, 2, 3, 0, 6, 1, 7, 3, 3, 4, 0, 5, 9, 5, 6, 5, 5, 9, 7, 6, 4, 1, 0, 7, 0, 6, 7, 1, 0, 7, 7, 7, 5, 0, 9, 8, 3, 1, 6, 8, 2, 7, 7, 9, 6, 0, 7, 2, 5, 0, 5, 8
Offset: 0

Views

Author

R. J. Mathar, Jan 17 2009

Keywords

Comments

By geometric series expansion, the same as the sum over the prime zeta function at even arguments, P(2i), i=1,2,....
(Pi^2/6)*density of A190641, the numbers divisible by exactly one prime with exponent greater than 1. - Charles R Greathouse IV, Aug 02 2016

Examples

			0.551693297656999184439731023971343578131500377778628252230...
		

Crossrefs

Programs

  • Mathematica
    digits = 105; m0 = 2 digits; Clear[rd]; rd[m_] := rd[m] = RealDigits[delta1 = Sum[PrimeZetaP[2n], {n, 1, m}] , 10, digits][[1]]; rd[m0]; rd[m = 2m0];
    While[rd[m] != rd[m-m0], Print[m]; m = m+m0]; Print[N[delta1, digits]]; rd[m] (* Jean-François Alcover, Sep 11 2015, updated Mar 16 2019 *)
  • PARI
    eps()=2.>>bitprecision(1.)
    primezeta(s)=my(t=s*log(2)); sum(k=1, lambertw(t/eps())\t, moebius(k)/k*log(abs(zeta(k*s))))
    sumpos(n=1,primezeta(2*n)) \\ Charles R Greathouse IV, Aug 02 2016
    
  • PARI
    sumeulerrat(1/(p^2-1)) \\ Amiram Eldar, Mar 18 2021

Formula

Equals Sum_{k>=1} 1/A084920(k) = Sum_{i>=1} P(2i) = A085548+A085964+A085966+A085968+... = A152447+A085548-A154932.
Equals Sum_{k>=2} 1/A000961(k)^2 = Sum_{k>=2} 1/A056798(k). - Amiram Eldar, Sep 21 2020
Equals (A136141 + A179119)/2. - Artur Jasinski, Mar 31 2025

Extensions

More digits from Jean-François Alcover, Sep 11 2015

A345957 Number of divisors of n with exactly half as many prime factors as n, counting multiplicity.

Original entry on oeis.org

1, 0, 0, 1, 0, 2, 0, 0, 1, 2, 0, 0, 0, 2, 2, 1, 0, 0, 0, 0, 2, 2, 0, 2, 1, 2, 0, 0, 0, 0, 0, 0, 2, 2, 2, 3, 0, 2, 2, 2, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 2, 0, 0, 2, 2, 2, 2, 2, 0, 4, 0, 2, 0, 1, 2, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 1, 2, 0, 4, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Aug 16 2021

Keywords

Comments

These divisors do not necessarily include the central divisors (A207375), and may not themselves be central.

Examples

			The a(n) divisors for selected n:
  n = 1:  6:  36:  60:  210:  840:  900:  1260:  1296:  3600:
     --------------------------------------------------------
      1   2    4    4     6     8    12     12     16     16
          3    6    6    10    12    18     18     24     24
               9   10    14    20    20     20     36     36
                   15    15    28    30     28     54     40
                         21    30    45     30     81     60
                         35    42    50     42            90
                               70    75     45           100
                              105           63           150
                                            70           225
                                           105
		

Crossrefs

The case of powers of 2 is A000035.
Positions of even terms are A000037.
Positions of odd terms are A000290.
Positions of 0's are A026424.
Positions of 1's are A056798.
The rounded version is A096825.
The case of all divisors (not just 2) is A347042.
The smallest of these divisors is A347045 (rounded: A347043).
The greatest of these divisors is A347046 (rounded: A347044).
A000005 counts divisors.
A001221 counts distinct prime factors.
A001222 counts all prime factors.
A056239 adds up prime indices, row sums of A112798.
A207375 lists central divisors.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A334997 counts chains of divisors of n by length.

Programs

  • Mathematica
    Table[Length[Select[Divisors[n],PrimeOmega[#]==PrimeOmega[n]/2&]],{n,100}]
  • PARI
    a(n) = my(nb=bigomega(n)); sumdiv(n, d, 2*bigomega(d) == nb); \\ Michel Marcus, Aug 16 2021
    
  • Python
    from sympy import divisors, factorint
    def a(n):
        npf = len(factorint(n, multiple=True))
        divs = divisors(n)
        return sum(2*len(factorint(d, multiple=True)) == npf for d in divs)
    print([a(n) for n in range(1, 88)]) # Michael S. Branicky, Aug 17 2021
    (Python 3.8+)
    from itertools import combinations
    from math import prod, comb
    from sympy import factorint
    def A345957(n):
        if n == 1:
            return 1
        fs = factorint(n)
        elist = list(fs.values())
        q, r = divmod(sum(elist),2)
        k = len(elist)
        if r:
            return 0
        c = 0
        for i in range(k+1):
            m = (-1)**i
            for d in combinations(range(k),i):
                t = k+q-sum(elist[j] for j in d)-i-1
                if t >= 0:
                    c += m*comb(t,k-1)
        return c # Chai Wah Wu, Aug 20 2021
    
  • Python
    from sympy import factorint
    from sympy.utilities.iterables import multiset_combinations
    def A345957(n):
        if n == 1:
            return 1
        fs = factorint(n,multiple=True)
        q, r = divmod(len(fs),2)
        return 0 if r else len(list(multiset_combinations(fs,q))) # Chai Wah Wu, Aug 20 2021

A246551 Prime powers p^e where p is a prime and e is odd.

Original entry on oeis.org

2, 3, 5, 7, 8, 11, 13, 17, 19, 23, 27, 29, 31, 32, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 243, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313
Offset: 1

Views

Author

Joerg Arndt, Aug 29 2014

Keywords

Comments

These are the integers with only one prime factor whose cototient is square, so this sequence is a subsequence of A063752. Indeed, cototient(p^(2k+1)) = (p^k)^2 and cototient(p) = 1 = 1^2. - Bernard Schott, Jan 08 2019
With 1 prepended, this sequence is the lexicographically earliest sequence of distinct numbers whose partial products are all numbers whose exponents in their prime power factorization are squares (A197680). - Amiram Eldar, Sep 24 2024

Crossrefs

Cf. A000961, A246547, A246549, A168363, A197680, subsequence of A171561.
Cf. also A056798 (prime powers with even exponents >= 0).
Subsequence of A063752.

Programs

  • Magma
    [n:n in [2..1000]| #PrimeDivisors(n) eq 1 and IsSquare(n-EulerPhi(n))]; // Marius A. Burtea, May 15 2019
    
  • Mathematica
    Take[Union[Flatten[Table[Prime[n]^(k + 1), {n, 100}, {k, 0, 14, 2}]]], 100] (* Vincenzo Librandi, Jan 10 2019 *)
  • PARI
    for(n=1, 10^4, my(e=isprimepower(n)); if(e%2==1, print1(n, ", ")))
    
  • Python
    from sympy import primepi, integer_nthroot
    def A246551(n):
        def f(x): return int(n-1+x-sum(primepi(integer_nthroot(x,k)[0])for k in range(1,x.bit_length(),2)))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 13 2024

A340784 Heinz numbers of even-length integer partitions of even numbers.

Original entry on oeis.org

1, 4, 9, 10, 16, 21, 22, 25, 34, 36, 39, 40, 46, 49, 55, 57, 62, 64, 81, 82, 84, 85, 87, 88, 90, 91, 94, 100, 111, 115, 118, 121, 129, 133, 134, 136, 144, 146, 155, 156, 159, 160, 166, 169, 183, 184, 187, 189, 194, 196, 198, 203, 205, 206, 210, 213, 218, 220
Offset: 1

Views

Author

Gus Wiseman, Jan 30 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are positive integers whose number of prime indices and sum of prime indices are both even, counting multiplicity in both cases.
A multiplicative semigroup: if m and n are in the sequence, then so is m*n. - Antti Karttunen, Jul 28 2024

Examples

			The sequence of partitions together with their Heinz numbers begins:
      1: ()            57: (8,2)            118: (17,1)
      4: (1,1)         62: (11,1)           121: (5,5)
      9: (2,2)         64: (1,1,1,1,1,1)    129: (14,2)
     10: (3,1)         81: (2,2,2,2)        133: (8,4)
     16: (1,1,1,1)     82: (13,1)           134: (19,1)
     21: (4,2)         84: (4,2,1,1)        136: (7,1,1,1)
     22: (5,1)         85: (7,3)            144: (2,2,1,1,1,1)
     25: (3,3)         87: (10,2)           146: (21,1)
     34: (7,1)         88: (5,1,1,1)        155: (11,3)
     36: (2,2,1,1)     90: (3,2,2,1)        156: (6,2,1,1)
     39: (6,2)         91: (6,4)            159: (16,2)
     40: (3,1,1,1)     94: (15,1)           160: (3,1,1,1,1,1)
     46: (9,1)        100: (3,3,1,1)        166: (23,1)
     49: (4,4)        111: (12,2)           169: (6,6)
     55: (5,3)        115: (9,3)            183: (18,2)
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
The case of prime powers is A056798.
These partitions are counted by A236913.
The odd version is A160786 (A340931).
A000009 counts partitions into odd parts (A066208).
A001222 counts prime factors.
A047993 counts balanced partitions (A106529).
A056239 adds up prime indices.
A058695 counts partitions of odd numbers (A300063).
A061395 selects the maximum prime index.
A072233 counts partitions by sum and length.
A112798 lists the prime indices of each positive integer.
- Even -
A027187 counts partitions of even length/maximum (A028260/A244990).
A034008 counts compositions of even length.
A035363 counts partitions into even parts (A066207).
A058696 counts partitions of even numbers (A300061).
A067661 counts strict partitions of even length (A030229).
A339846 counts factorizations of even length.
A340601 counts partitions of even rank (A340602).
A340785 counts factorizations into even factors.
A340786 counts even-length factorizations into even factors.
Squares (A000290) is a subsequence.
Not a subsequence of A329609 (30 is the first term of A329609 not occurring here, and 210 is the first term here not present in A329609).
Positions of even terms in A373381.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],EvenQ[PrimeOmega[#]]&&EvenQ[Total[primeMS[#]]]&]
  • PARI
    A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i, 2] * primepi(f[i, 1]))); }
    A353331(n) = ((!(bigomega(n)%2)) && (!(A056239(n)%2)));
    isA340784(n) = A353331(n); \\ Antti Karttunen, Apr 14 2022

Formula

Intersection of A028260 and A300061.

A360953 Numbers whose right half of prime indices (exclusive) adds up to half the total sum of prime indices.

Original entry on oeis.org

1, 4, 9, 12, 16, 25, 30, 48, 49, 63, 64, 70, 81, 108, 121, 154, 165, 169, 192, 256, 270, 273, 286, 289, 325, 361, 442, 529, 561, 567, 595, 625, 646, 675, 729, 741, 750, 768, 841, 874, 931, 961, 972, 1024, 1045, 1173, 1334, 1369, 1495, 1575, 1653, 1681, 1750
Offset: 1

Views

Author

Gus Wiseman, Mar 09 2023

Keywords

Comments

Also numbers whose left half of prime indices (inclusive) adds up to half the total sum of prime indices.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
     1: {}
     4: {1,1}
     9: {2,2}
    12: {1,1,2}
    16: {1,1,1,1}
    25: {3,3}
    30: {1,2,3}
    48: {1,1,1,1,2}
    49: {4,4}
    63: {2,2,4}
    64: {1,1,1,1,1,1}
    70: {1,3,4}
    81: {2,2,2,2}
   108: {1,1,2,2,2}
For example, the prime indices of 1575 are {2,2,3,3,4}, with right half (exclusive) {3,4}, with sum 7, and the total sum of prime indices is 14, so 1575 is in the sequence.
		

Crossrefs

The left version is A056798.
The inclusive version is A056798.
These partitions are counted by A360674.
The left inclusive version is A360953 (this sequence).
A112798 lists prime indices, length A001222, sum A056239, median* A360005.
First for prime indices, second for partitions, third for prime factors:
- A360676 gives left sum (exclusive), counted by A360672, product A361200.
- A360677 gives right sum (exclusive), counted by A360675, product A361201.
- A360678 gives left sum (inclusive), counted by A360675, product A347043.
- A360679 gives right sum (inclusive), counted by A360672, product A347044.

Programs

  • Mathematica
    Select[Range[100],With[{w=Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]},Total[Take[w,-Floor[Length[w]/2]]]==Total[w]/2]&]

A377816 Numbers that have a single even exponent in their prime factorization.

Original entry on oeis.org

4, 9, 12, 16, 18, 20, 25, 28, 44, 45, 48, 49, 50, 52, 60, 63, 64, 68, 72, 75, 76, 80, 81, 84, 90, 92, 98, 99, 108, 112, 116, 117, 121, 124, 126, 132, 140, 147, 148, 150, 153, 156, 162, 164, 169, 171, 172, 175, 176, 188, 192, 198, 200, 204, 207, 208, 212, 220, 228
Offset: 1

Views

Author

Amiram Eldar, Nov 09 2024

Keywords

Comments

First differs from A162645 at n = 239: A162645(239) = 900 = 2^2 * 3^2 * 5^2 is not a term of this sequence.
Each term can be represented in a unique way as m * p^(2*k), k >= 1, where m is an exponentially odd number (A268335) and p is a prime that does not divide m.
Numbers k such that A350388(k) is a prime power with an even positive exponent (A056798 \ {1}).
The asymptotic density of this sequence is Product_{p prime} (1 - 1/(p*(p+1))) * Sum_{p prime} 1/(p^2+p-1) = 0.26256423811374124133... .

Crossrefs

A377818 is a subsequence.

Programs

  • Mathematica
    Select[Range[250], Count[FactorInteger[#][[;; , 2]], _?EvenQ] == 1 &]
  • PARI
    is(k) = if(k == 1, 0, my(e = factor(k)[, 2]); #select(x -> !(x%2), e) == 1);
Showing 1-10 of 21 results. Next