A192110 Monotonic ordering of nonnegative differences 2^i - 3^j, for 40 >= i >= 0, j >= 0.
0, 1, 3, 5, 7, 13, 15, 23, 29, 31, 37, 47, 55, 61, 63, 101, 119, 125, 127, 175, 229, 247, 253, 255, 269, 295, 431, 485, 503, 509, 511, 781, 943, 997, 1015, 1021, 1023, 1319, 1631, 1805, 1909, 1967, 2021, 2039, 2045, 2047, 3367, 3853, 4015, 4069, 4087, 4093
Offset: 1
Examples
The differences accrue like this: 1-1 2-1 4-3.....4-1 8-3.....8-1 16-9....16-3....16-1 32-27...32-9....32-3....32-1 64-27...64-9....64-3....64-1
Links
- Rok Cestnik, Table of n, a(n) for n = 1..534 [truncated to 2^40-1 by _Georg Fischer_, Nov 16 2021]
- H. Gauchman and I. Rosenholtz (Proposers), R. Martin (Solver), Difference of prime powers, Problem 1404, Math. Mag., 65 (No. 4, 1992), 265; Solution, Math. Mag., 66 (No. 4, 1993), 269.
- Math Overflow, 3^n - 2^m = +-41 is not possible. How to prove it?, Several contributors, Jun 29 2010.
Crossrefs
This is the first of a set of 52 similar sequences:
A192110: 2^i-3^j, A192111: 3^i-2^j, A192112: 2^i-4^j, A192113: 4^i-2^j, A192114: 2^i-5^j, A192115: 5^i-2^j, A192116: 2^i-6^j, A192117: 6^i-2^j,
A192118: 2^i-7^j, A192119: 7^i-2^j, A192120: 2^i-8^j, A192121: 8^i-2^j, A192122: 2^i-9^j, A192123: 9^i-2^j, A192124: 2^i-10^j, A192125: 10^i-2^j,
A192147: 3^i-4^j, A192148: 4^i-3^j, A192149: 3^i-5^j, A192150: 5^i-3^j, A192151: 3^i-6^j, A192152: 6^i-3^j, A192153: 3^i-7^j, A192154: 7^i-3^j,
A192155: 3^i-8^j, A192156: 8^i-3^j, A192157: 3^i-9^j, A192158: 9^i-3^j, A192159: 3^i-10^j, A192160: 10^i-3^j, A192161: 4^i-5^j, A192162: 5^i-4^j,
A192163: 4^i-6^j, A192164: 6^i-4^j, A192165: 4^i-7^j, A192166: 7^i-4^j, A192167: 4^i-8^j, A192168: 8^i-4^j, A192169: 4^i-9^j, A192170: 9^i-4^j,
Programs
-
Mathematica
c = 2; d = 3; t[i_, j_] := c^i - d^j; u = Table[t[i, j], {i, 0, 40}, {j, 0, i*Log[d, c]}]; v = Union[Flatten[u ]]
Comments