cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A192110 Monotonic ordering of nonnegative differences 2^i - 3^j, for 40 >= i >= 0, j >= 0.

Original entry on oeis.org

0, 1, 3, 5, 7, 13, 15, 23, 29, 31, 37, 47, 55, 61, 63, 101, 119, 125, 127, 175, 229, 247, 253, 255, 269, 295, 431, 485, 503, 509, 511, 781, 943, 997, 1015, 1021, 1023, 1319, 1631, 1805, 1909, 1967, 2021, 2039, 2045, 2047, 3367, 3853, 4015, 4069, 4087, 4093
Offset: 1

Views

Author

Clark Kimberling, Jun 23 2011

Keywords

Comments

Comments from N. J. A. Sloane, Oct 21 2019: (Start)
Warning: Note the definition assumes i <= 40.
Because of this assumption, it is not true that this is (except for a(1)=0) the complement of A075824 in the odd integers.
However, by definition, it is the complement of A328077.
(End)
All 52 sequences in this set are finite. - Georg Fischer, Nov 16 2021

Examples

			The differences accrue like this:
1-1
2-1
4-3.....4-1
8-3.....8-1
16-9....16-3....16-1
32-27...32-9....32-3....32-1
64-27...64-9....64-3....64-1
		

Crossrefs

Cf. A075824, A173671, A192111, A328077 (complement).
For primes, see A007643, A007644, A321671.
This is the first of a set of 52 similar sequences:
A192110: 2^i-3^j, A192111: 3^i-2^j, A192112: 2^i-4^j, A192113: 4^i-2^j, A192114: 2^i-5^j, A192115: 5^i-2^j, A192116: 2^i-6^j, A192117: 6^i-2^j,
A192118: 2^i-7^j, A192119: 7^i-2^j, A192120: 2^i-8^j, A192121: 8^i-2^j, A192122: 2^i-9^j, A192123: 9^i-2^j, A192124: 2^i-10^j, A192125: 10^i-2^j,
A192147: 3^i-4^j, A192148: 4^i-3^j, A192149: 3^i-5^j, A192150: 5^i-3^j, A192151: 3^i-6^j, A192152: 6^i-3^j, A192153: 3^i-7^j, A192154: 7^i-3^j,
A192155: 3^i-8^j, A192156: 8^i-3^j, A192157: 3^i-9^j, A192158: 9^i-3^j, A192159: 3^i-10^j, A192160: 10^i-3^j, A192161: 4^i-5^j, A192162: 5^i-4^j,
A192163: 4^i-6^j, A192164: 6^i-4^j, A192165: 4^i-7^j, A192166: 7^i-4^j, A192167: 4^i-8^j, A192168: 8^i-4^j, A192169: 4^i-9^j, A192170: 9^i-4^j,
A192171: 4^i-10^j, A192172: 10^i-4^j, A192193: 5^i-6^j, A192194: 6^i-5^j, A192195: 5^i-7^j, A192196: 7^i-5^j, A192197: 5^i-8^j, A192198: 8^i-5^j,
A192199: 5^i-9^j, A192200: 9^i-5^j, A192201: 5^i-10^j, A192202: 10^i-5^j.

Programs

  • Mathematica
    c = 2; d = 3; t[i_, j_] := c^i - d^j;
    u = Table[t[i, j], {i, 0, 40}, {j, 0, i*Log[d, c]}];
    v = Union[Flatten[u ]]

A227048 Irregular triangle read by rows: row n, for n >= 0, lists the nonnegative differences 3^n - 2^m, m >= 0, in increasing order.

Original entry on oeis.org

0, 1, 2, 1, 5, 7, 8, 11, 19, 23, 25, 26, 17, 49, 65, 73, 77, 79, 80, 115, 179, 211, 227, 235, 239, 241, 242, 217, 473, 601, 665, 697, 713, 721, 725, 727, 728, 139, 1163, 1675, 1931, 2059, 2123, 2155, 2171, 2179, 2183, 2185, 2186, 2465, 4513, 5537, 6049, 6305
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 29 2013

Keywords

Comments

A020914(n) = length of n-th row;
T(n,1) = A056577(n);
T(n,A098294(n)) = A001047(n);
T(n,A020914(n)) = A024023(n);
T(n,k) = A196486(n,A020914(n)-k) for n > 0, k = 1..A056576(n).

Examples

			Initial rows:
0:  0
1:  1,2
2:  1,5,7,8
3:  11,19,23,25,26 (= 27-16, 27-8, 27-4, 27-2, 27-1)
4:  17,49,65,73,77,79,80
5:  115,179,211,227,235,239,241,242
6:  217,473,601,665,697,713,721,725,727,728
7:  139,1163,1675,1931,2059,2123,2155,2171,2179,2183,2185,2186
8:  2465,4513,5537,6049,6305,6433,6497,6529,6545,6553,6557,6559,6560
...
		

Crossrefs

Programs

  • Haskell
    a227048 n k = a227048_tabf !! n !! (k-1)
    a227048_row n = a227048_tabf !! n
    a227048_tabf = map f a000244_list  where
       f x = reverse $ map (x -) $ takeWhile (<= x) a000079_list

Extensions

Definition revised by N. J. A. Sloane, Oct 11 2019

A173671 Positive integers that cannot be expressed as 3^m-2^n where m and n are integers.

Original entry on oeis.org

3, 4, 6, 9, 10, 12, 13, 14, 15, 16, 18, 20, 21, 22, 24, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 74, 75, 76, 78, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100
Offset: 1

Views

Author

Max Alekseyev, Nov 24 2010

Keywords

Comments

The complement of this set, i.e., integers of the form 3^m-2^n, is A192111. - M. F. Hasler, Nov 24 2010

Crossrefs

Extensions

Deleted unwarranted programs and b-file. - N. J. A. Sloane, Oct 21 2019

A328077 Complement of A192110.

Original entry on oeis.org

2, 4, 6, 8, 9, 10, 11, 12, 14, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80
Offset: 1

Views

Author

N. J. A. Sloane, Oct 12 2019

Keywords

Comments

Note that, because A192110 assumes i <= 40, it is incorrect to say that the present sequence consists of "the positive integers that cannot be expressed as 2^m-3^n where m and n are integers".
This sequence is included because one way to remove the assumption i <= 40 from A192110 (and the fifty other unproved sequences of the same type) would be to show that the complements are correct, using the method used to prove the correctness of A173671.

Crossrefs

Complement of A192110.

Extensions

Edited by N. J. A. Sloane, Oct 21 2019

A364001 Primes of the form |2^i - 3^j|, i >= 1, j >= 1.

Original entry on oeis.org

5, 7, 11, 13, 17, 19, 23, 29, 37, 47, 61, 73, 79, 101, 139, 179, 211, 227, 229, 239, 241, 269, 431, 503, 509, 601, 727, 997, 1021, 1163, 1319, 1931, 2039, 2179, 3299, 3853, 4093, 4513, 6529, 6553, 7949, 8111, 11491, 14197, 16141, 16381, 19427, 19681, 32687
Offset: 1

Views

Author

Clark Kimberling, Aug 09 2023

Keywords

Crossrefs

Programs

  • Mathematica
    z = 500;
    t = Table[Abs[2^i - 3^j], {i, 1, z}, {j, 1, z}];
    u = Sort[Flatten[t]];
    v = Union[u] ; (* A363999 *)
    w = (v - 1)/2 ;  (* A364000 *)
    Intersection[v, Prime[Range[200000]]]  (* this sequence *)

A175832 Number of solutions of equation 3^q - 2^p = n over integer variables p, q.

Original entry on oeis.org

1, 2, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Vladimir Reshetnikov, Sep 15 2010

Keywords

Comments

a(n)=0 iff n is in A173671; a(n)>0 iff n is in A192111.

Extensions

Edited and extended by Max Alekseyev, Jan 28 2012

A323698 Primes of the form 3^j - 2^k, for j>=0, k>=0.

Original entry on oeis.org

2, 5, 7, 11, 17, 19, 23, 73, 79, 139, 179, 211, 227, 239, 241, 601, 727, 1163, 1931, 2179, 3299, 4513, 6529, 6553, 11491, 19427, 19681, 50857, 58537, 58921, 111611, 144379, 176123, 177019, 177131, 529393, 545747, 1593299, 1594259, 2685817, 4782961, 9492289, 14346859
Offset: 1

Views

Author

Jinyuan Wang, Jan 24 2019

Keywords

Comments

In this sequence, only 5 and 17 make both j and k even numbers.
Generally, the way to prove that a number is not in this sequence is to successively take residues modulo 3, 8, 5, and 16 on both sides of the equation 3^j - 2^k = x.

Examples

			11 = 3^3 - 2^4, so 11 is a term.
41 == 1 (mod 8), 41 == 2 (mod 3), so j = 2*l, k = 2*m. 41 == 1 (mod 5), but 3^(2*l) - 2^(2*m) mod 5 is 0, 2 or 3. So 41 is not in this sequence.
		

Crossrefs

Cf. A007643 (Primes not of form |3^x - 2^y|).
Cf. A321671 (Primes of the form 2^j - 3^k).

Programs

  • Mathematica
    c = 3; d = 2; t[i_, j_] := c^i - d^j;
    u = Table[If[PrimeQ[t[i, j]] == True, u = t[i, j]], {i, 0, 20}, {j, 0, i*Log[d, c]}];
    v = Union[Flatten[u]]
  • PARI
    forprime(p=1, 1000, k=0; x=3; y=1; while(k
    				

Formula

Intersection of A000040 and A192111.
Showing 1-7 of 7 results.